^{1.} Suleiman I. SALAWU, ^{2.} A.M. SALIU

CHARACTERIZATION AND BENEFICIATION OF OBAJANA IRON ORE, KOGI STATE, NIGERIA

¹Department of Mechanical Engineering, Kogi State Polytechnic, Itakpe, NIGERIA ²Department of Metallurgical and Materials Engineering, Kogi State Polytechnic Itakpe, NIGERIA

Abstract: The ore sample was sourced from Obajana (oyo) village, Lokoja Local Government Area of Kogi State. Characterization of Obajana iron ore deposit, Kogi State, Nigeria was carried out using XRF, XRD, SEM and petrological microscope. The XRF result revealed that the ore contained 0.38%P, 15.91K, 2.48%Ca, 39.24%Fe, 1.02%Mg, 3.54%Al and 25.56%Si. The XRD result revealed that the mineral phases of the ore as Quartz (SiO₂), Hematite (Fe₂O₃) and Biotite K(Mg,Fe)₃AlSi₃O₁₀(OH)₂ which are also the major minerals phases. The SEM and petrographic examination revealed that the ore matrix is an assemblage of inter-layered different minerals crystals with different shapes, sizes and angles of orientations and separated by grain boundaries. Low intensity magnetic separator was used to separate the ore into concentrate and tailing. Both the concentrate and tailing were weighed and analyzed using XRF machine

Keywords: Chemical, Mineralogical, Characterization, Beneficiation, Obajana iron ore

INTRODUCTION

hub in the West African sub-region, but the economy of the contained majorly hematite, goethite, rutile while, country cannot be strong and vibrant without growth in its manganese oxide, zincite, zirconium and silicate minerals iron and steel sector or without the use of iron and steel in were present in minor quantities. Table 1 shows the iron ore the manufacturing sector among others (Agbu, 2007).

Iron is the major component in steel production; usually over EXPERIMENTAL PROCEDURE 90 percent, at present there is no satisfactory substitute for steel even in modern industrialized societies, the supply of The outcropped iron ore samples that were characterised in iron will therefore remain an important fundament to industrial development in the twenty-first century (Jens and Nicolas, 2003). The most commonly used iron minerals include; hematite, Fe₂O₃ (70% Fe); magnetite, Fe₃O₄ (72% Fe) and of much less importance: limonite, Fe_2O_3 ·3H2O (60%) Fe); siderite, FeCO₃ (48.3% Fe); and pyrite, FeS₂ (46.6% Fe) (Biswas, 2005).

Characterization of iron ore is a very important step required before beneficiation and iron production takes place. In this procedure, the quantity, grade or quality, densities, shape, and physical characteristics are determined to allow for appropriate application of technical and economic parameters to support production planning and evaluation of the economic viability of deposits (john et al., 2015). Iron ore deposits have not been fully explored and exploited in Nigeria and if fully exploited can serve as foreign exchange for the country (Danmola and Abba, 2013).

Agbado Okudu iron ore deposit has been worked on by Agava (2006). Who reported that the iron ore contained, on the average, total iron content of 38.82% and mineralogical analysis revealed that the iron bearing minerals are predominantly magnetite and haematite.

Agava et al. (2016) determined the chemical, mineralogical and liberation size of Ochokochoko iron ore. They reported that the ore is predominantly magnetite, hematite, calcite, alumina, and silica, they also reported that the ore can be classified as medium grade and liberated at -180+125 µm sieve size. Salawu (2015) investigated the chemical and

mineralogical characterization of Gujeni iron ore deposit Nigeria has the potentials of becoming a regional economy Kaduna State, Nigeria and the findings showed that the ore deposits in Nigeria

– Materials collection, equipment and preparation

this study were collected from Obajana (oyo) village about 5km from Obajana cement company ($7^{\circ}45^{\circ}N$ and $6^{\circ}67^{\circ}N$) shown in figure 1 and equipment used in this research were Laboratory sledge hammer, Jaw crusher, Ball mill, Xray florescence (XRF) Machine, X-ray diffractometer (XRD) Machine, Petrological microscope and Scanning electron microscope (SEM). Samples of the iron ore were collected from 3 points on the deposit located at Obajana (oyo) village located, in Lokoja Local Government Area of Kogi State. Grab method of sampling was used in assembling the samples. 35kg of the samples were collected at interval of 180m apart and 4m depth, the lump sizes of the ore samples were crushed and ball milled.

— Characterization and beneficiation techniques

The representative sample was taken and analysed using X ray Florescence (XRF) machine to determine the elemental composition of the ore. The mineralogy of the ore was determined using X-ray diffraction (XRD) machine, the thin section of minerals and rocks were examined with the mineral fragment using petrological microscope and the microscopic features of the ore using scanning electron microscope. 200g of the iron ore was reduced to the liberation size of the ore (-355+250µm) using ball milling machine before separation. Low intensity magnetic separator was used to separate the ore into concentrate and tailing. Both the concentrate and tailing were weighed and analyzed using XRF machine.

Table 1: The Nigerian iron ore deposits and their proven reserves (in million tonnes)

S/NO	State	Location	Iron content	Proven reserves	
1	Vari	Dassa Mas	42 400/	400 million	
1	Kogi	bassa-inge	43-49%	tonnes	
2		Agbado Okadu	38,48%	60 million	
2		Agbauo Okauu	0, 01-00	tonnes	
3		Ajabanoko	40%	60 million	
		Параноко	10 /0	tonnes	
4		Jatti	40%	-	
5		Koton Karfe	43-53%	428 million	
			13 33 10	tonnes	
6		Itakpe	36-38%	200 million	
		1	,	tonnes	
7		Chokochoko	30-40%	14 million	
0		Altraina	41 470/	tonnes	
0		Акоша	41-47%	200 million	
9		Tajimi	39-58%	200 million	
		-	Under	tonnes	
10		Ero	investigation	-	
			Under		
11		Ebiya	investigation	-	
10		<u>ol</u> <i>i</i>	Under		
12		Obanaja	investigation	-	
13		Agbaja	43-49%	2 billion tonnes	
14		Kakun (Kabba)	38-42%	-	
15		Ubo-Toso	Under		
D			investigation	-	
16	Kaduna	Kagara	58-63%		
10	Radulla	(Kubacha)	(Kubacha)	0, 60-02	
17		Birni Gwari	30-35%	-	
18	Ondo	Akunu (Ikare)	Under	-	
10			investigation		
19	Bauchi	Reshi	10-19%	-	
20		Ayiwawa	6-23%	-	
21	DI (Gamawa	40-45%	-	
- 22	Plateau	Veketuwo	40-50%	2 0 (11)	
23	Nasarawa	Toto Muro	25-38%	3.8 million	
24	Vahhi	Dalvin gani	270/	tonnes	
24	Keddi	Dakingari	51%	40.6 million	
25	Anambra	Nsude Hill	43-50%	toppes	
				connes	

Source: (Uwadiale, 1989; Thomas, 2002)

RESULTS AND DISCUSSION

Table 2 present the result of the chemical analysis of Obajana iron ore using XRF in weight percentages. The ore contains 39.24 % Fe and 25.56 % Si as major constituents; with 15.91 % K, 3.5 % Al, and P is the least with 0.38% while Table 3 shows the chemical analysis of the oxide composition Obajana iron ore.

The result shows that the ore contains 47.82% Fe₂O₃ and 24.1% SiO₂ as major constituents, with 11.43%K₂O, 0.24%MgO, 4.61TiO₂, 2.744P₂O₅, 0.23%PbO and 1.45%Al₂O₃

as minor constituents. Figure 2 shows the XRF pattern of the ore.

Figure 2: XRF pattern of the obajana iron ore Table 2: Chemical analysis of the elemental composition

Obajana iron ore				
Element	Element	Element	Atomic	Weight
number	symbol	name	conc.	conc.
14	Si	Silicon	25.56	20.84
13	Al	Aluminium	3.54	5.97
19	K	Potassium	15.91	18.80
26	Fe	Iron	39.24	33.30
39	Y	Yttrium	1.35	3.64
41	Nb	Niobium	1.29	3.61
47	Ag	Silver	1.09	3.56
20	Са	Calcium	2.48	3.00
17	Cl	Chlorine	1.36	1.46
22	Ti	Titanium	1.00	1.44
6	С	Carbon	3.19	1.16
16	S	Sulphur	1.11	1.07
11	Na	Sodium	1.48	1.03
12	Mg	Magnesium	1.02	0.75
15	р	Phosphorus	0.38	0.36

Table 3: Chemical analysis of the oxide composition Obaiana iron ore

o sujuitu fiori ore				
Chemical Compound	Assay (%)			
SiO_2	24.1			
Al_2O_3	1.45			
K ₂ O	11.43			
CaO	7.2			
TiO ₂	4.61			
V ₂ O ₅	0.08			
MgO	0.24			
Fe ₂ O ₃	47.82			
CuO	0.067			
PbO	0.23			
BaO	0.10			
P_2O_5	2.744			
Na ₂ O	0.049			

Figure 3: SEM micrograph of Head Sample

Table 4 presents the mineralogical composition of the ore analyzed using XRF machine. Table 5 shows Composition of sample, it could be observed from table 4 that the ore contained quartz (SiO₂), hematite (Fe₂O₃), and biotite (K(Mg,Fe)₃AlSi₃O₁₀(OH)₂) as the major mineral phases. From the SEM examination (figures 3), it is observed that the minerals are separated by grain boundaries, no interlocking of minerals and the mineral particles vary in sizes.

Table 4: X	RD Analysis Result of	the Composite Sample
Mineral	Chemical Name	Chemical Formula

Ν	lame		
Q	uartz	Silicate	SiO ₂
He	matite	Iron Oxide	Fe ₂ O ₃
В	iotite	Potassium Iron Magnesium Aluminum Silicate Hydroxide	K(Mg,Fe)3AlSi ₃ O ₁₀ (OH) ₂

The iron minerals have relatively smaller grains and smooth boundaries that created segregations between the iron and other minerals. Petrographic Microscopy of Obajana Iron Ore in

Figure 4: Petrographic Microscopy of Obajana Iron Ore

Table 5: Composition of the concentrate and the tailing	3
after magnetic concentration	

Compounds	Concentrates	Tailings		
SiO ₂	15.90	32.83		
Al ₂ O ₃	0.43	7.27		
CaO	5.11	5.42		
TiO ₂	3.31	15.27		
V_2O_5	0.17	0.14		
K ₂ O	7.21	0.061		
MgO	0.39	0.11		
Fe ₂ O ₃	56.32	43.09		
BaO	0.23	<lod< td=""></lod<>		
P_2O_5	1.15	0.13		
MgO	<lod< td=""><td>3.0</td></lod<>	3.0		

Figure 4 shows A whitish portion the quartz minerals, brown portion which is the area partially replaced by hematite and the dark portion is the biotite. This phenomenon enhances easy liberation of valuable minerals from the gangues. 200g of the iron ore vs. reduced to the [9] liberation size of the ore (-355+250µm) using ball milling machine before separation. Low intensity magnetic separator was used to separate the ore into concentrate and tailing. Both the concentrate and tailing were weighed and

the concentrate and the tailing after magnetic concentration. The chemical analysis shows that the concentrate produced contained 56.32% Fe and 15.9% SiO_2 , while the tailing gave 43.09% Fe₂O₃ and 32.83% SiO₂.

CONCLUSIONS

The following conclusions were drawn:

- = The result shows that the ore contains 47.82% Fe₂O₃ and 24.1% SiO₂ as major constituents, with 11.43%K₂O, 0.24%MgO, 4.61TiO₂, 2.744P₂O₅, 0.23%PbO and 1.45%Al₂O₃ as minor constituents and thus can be regarded as medium grade iron ore.
- = The mineralogical analysis of the ore revealed that the iron bearing minerals are mainly Biotite, Hematite and Magnetite.
- = The SEM analysis results revealed that the iron bearing minerals are separated from other minerals contained in the ore by smooth grain boundaries.
- From the results gotten, Obajana iron ore is a deposit that ≡ can be explored and exploited for usage in iron and steel production.

Acknowledgment

The authors are grateful for the financial support provided by Tertiary Education Trust Fund (TETFund) Nigeria through Institution Based Research sponsorship to carry out this research. We would like to express our appreciation to the management of Kogi State Polytechnic Lokoja for this opportunity.

References

- Agava, A.A., (2006): Beneficiation of Agbado-Okudu iron [1] ore deposit, Department of Metallurgical Engineering, A.B.U. Zaria, unpublished.
- Agava, A. A., Murina, R. A., Abdurrahman A. S., Egbe, E. A. [2] P. and Thomas D. G. (2016)
- Determination of Chemical, Mineralogical Composition [3] and Liberation Size of Ochokochoko Iron Ore, Kogi State, Nigeria. Nigerian Journal of Engineering, 23, pp 77-86
- [4] Agbu, O. (2007). The iron and steel industry and industrialization. Exploring Nigeria's cooperation with Japan. Report Institute of developing economics, Japan External Trade Organization
- [5] Biswas A.K., (2005). Principles of Blast Furnace Iron Making, SBA Publications, Calcutta, India, pp200.
- [6] Danmola, R. and Abba, M.W (2013). Solid Mineral Resources: Alternative Source of Revenue for the Nigerian Economy. Journal of Emerging Trends in Economics and Management Sciences (JETEMS), 4, PP.487-492
- [7] Jens Gutzmer and Nicolas J. Beukes. "Iron and Manganese Ore Deposit: Mineralogy, Geochemistry and Economic Geology-Vol. IV www.eolss.net/sample-Geology." chapters/c01/e6-15-06-03.pdf
- [8] Olasunkanmi, N.K., Olufemi S.B., Adebayo.A. (2017). Exploration for Iron Ore in Agbado-Okudu, Kogi State, Nigeria. Arabian Journal of Geosciences, 10, pp.54
- Oloche, B. Yaro, S. A. and Thomas, D. G. (2001): The chemical and mineralogical characteristics of Muro iron ore deposit. Journal of Engineering Technology and Industrial Application, 1, pp. 71-72

- [10] Oyeyinka, A., (1997). Chemical Compositions of some major Nigerian Iron Ore Deposits, Journal of the Raw Material Research Development Council, 2, pp. 23-28.
- [11] Salawu, A. O. Characterization of Gujeni iron ore deposit, Kaduna state, Nigeria. Department of Metallurgical and Materials Engineering, Ahmadu Bello University, Zaria. M.Sc. Thesis. Unpublished. 2015.
- [12] Thomas, D. G. and Yaro, S. A. (2009). Chemical and Mineralogical Characteristics of Koton-Karfe Iron Ore, Journal of Engineering and Technology Bayero University, Kano, 4, pp 65-71.
- [13] Uwadiale, G.O. (1989). Up-grading of Nigerian Iron Ore, Journal of Mineral and Metallurgical Processing, 2, pp34-37.

ISSN: 2067-3809

copyright © University POLITEHNICA Timisoara, Faculty of Engineering Hunedoara, 5, Revolutiei, 331128, Hunedoara, ROMANIA <u>http://acta.fih.upt.ro</u>