^{1.}Saša VASILJEVIĆ, ^{2.}Nataša ALEKSIĆ, ^{3.}Dragan RAJKOVIĆ, ⁴Rade ĐUKIĆ, ⁵. Milovan ŠARENAC, ⁶. Nevena BANKOVIĆ

THE BENEFITS OF APPLICATION OF CAD/CAE TECHNOLOGY IN THE DEVELOPMENT OF VEHICLES IN THE AUTOMOTIVE INDUSTRY

^{1-6.} High Technical School of Professional Studies, Kragujevac, SERBIA

Abstract: The development of various software packages enables easier and faster designing and development of the existing systems in the automotive and other industries. CAD technology tests allow faster and much economical designing of different parts and systems in vehicles. With this technology, it is possible to speed up the process of designing and making of the most complicated systems and parts in the vehicle without additional experiments. However, the problem arises with designing parts and systems that do not have a sufficiently developed field of theoretical assumptions. This paper presents different applications on specific complex systems and parts of vehicles and each of them has been given the importance in the research. Keywords: Vehicles, design, development, CAD, CAE

INTRODUCTION

The development of automotive industry and its products optimization. Software solutions used for production requires a set of challenging and elaborate researches and purposes are CAM (Computer-aided manufacturing) series of complex experiments. With the development of technology, many software solutions have been created that

facilitate and enable faster testing of certain parts and assemblies in vehicles. The use of these software solutions is diverse, and in the automotive industry they have various as the advantages they have in designing and developing the applications, e.g. determining the load of individual parts or assemblies, examination of a vehicle's design etc. This paper shows the application and importance of CAD technology in this industry, and its advantages in relation to some real experiments.

simulation has proven to accelerate all engineering and technical documentation. The use of technologies has design processes for several hundred times in relation to "manual" design, and to speed up production of various development time, and to improve safety, comfort and documents and, consequently, the research. development has led to creation of a model and research of three-dimensional interpretation. All the technologies rely on the principles of mathematical sciences, descriptive By observing all the phases of the development of one geometry, informatics and applied electronics. ISO standards define computer graphics as a set of methods and techniques Figure 1, it can be noticed that there are different tests in all for converting data that are sent to or from the graphic phases of the life cycle and, consequently, different studies. display, via computer. Some of the most famous CAD technological processes are CATIA, SolidWorks, AutoCAD, ProENGINEER.

industry and industry in general goes mainly into three directions – design, engineering and production. CAD (Computer-aided design) is the use of computer systems to help in the creation, modification, analysis, or optimization of a design.

Computer-aided engineering (CAE) is a widespread use of the past and the experiments of the future. computer software to help in engineering analysis tasks. It With the use of existing databases, the latest electrical

dynamics (CFD), multibody dynamics (MBD), and technologies [1,2].

In this paper, we will carry out the analysis of benefits of only CAE and CAD technologies in the process of development itself, which represents the very purpose of this paper; as well vehicle in relation to experimental methods. One of the main advantages of technologies is faster testing of the development of some parts or the entire vehicle, the reduction of cost of experiments and development (the easier way of checking the weaknesses and disadvantages of Even in the earliest age of computer technology, graphic a part), and the acceleration of the process of creating allowed manufacturers to reduce the cost and product The durability of the vehicles they manufacture.

GENERAL IMPORTANCE OF THE PHASES OF A VEHICLE DEVELOPMENT

vehicle, and all the products in its life cycle, as can be seen in These researches and tests are highly complex and elaborate, therefore, the application of CAD/CAE is of great benefit and importance due to its advantages in relation to the real Nowadays, the development of software in the automotive experiments that would be carried out. Today, the so-called virtual laboratories are developed, and they greatly reduce the cost of testing and the time necessary for researches. Virtual laboratories represent an innovation in the use of information technology for the purpose of education. They represent a unique link between the laboratory test desk from

includes finite element analysis (FEA), computational fluid equipment is available from any place at any time. In this

phase, the exactness of technical documentation is of great importance, thus, CAD technology is used for the making of accurate and precise technical documentation. repeatability of the expensive; therefore physical testing can be carried once, and with CAE technology it can be repeated.

Figure 1. An overview of tests and researches in the product's (vehicle's) life cycle

The next type of vehicle testing is testing of new innovations, which implies possible changes to already existing systems, in this case, on vehicles. The tests regarding the mentioned changes are completed with the help of CAE technologies. With this technology, the characteristics of such an altered system with all these innovations can be freely determined. Such testing, or a research, represents an option that in relation to some physical researches enables the development and testing of these examinations with many changes and possibilities it has provided.

When using a products, in this case a vehicle, its reliability is of great importance – CAE technology allows us to accurately determine the reliability of each vehicle system, even after a longer period of its being used.

COMPARISON OF VIRTUAL AND PHYSICAL EXPERIMENTS Testing was an important part of product development in the past. The weaknesses of a design could be detected by testing before the product came into the customer's hands. However, the ability to carry out a thorough analysis of many aspects of a design using the computer-assisted engineering (CAE) tools has reached the point where "virtual" product development can be considered to be a realistic proposal. Virtual experiments have certain advantages, namely the ability to control the experiment, the repeatability of performance and results, the ability to perform accelerated tests, the safety of the experiment implementation, the ability to simulate real conditions, the ability to optimize the implementation of the experiment, the specific experiment implementation plan. The development of a new product is one of the most powerful and most difficult activities in the industry.

In addition to the mentioned advantages, the use of technologies considerably reduces the cost of testing and the research. The security is very important, as well as the

Cases when it is not possible to apply CAD/CAE technologies

Despite the development of the existing technologies, there are cases when it is not possible to apply modern technology in the development and research of some systems, or in the automotive industry in the development of certain systems in the vehicle.

The reason for this is that certain theories or some phenomena have not been sufficiently explored, thus simulations cannot be properly or at all completed. There are also simulations that are extremely difficult because it is hard to simulate some physical phenomena, therefore the software is not sufficiently developed. For example, the analysis of the fatigue of the hot exhaust system is currently extremely difficult for simulation (due to uncertainties about the properties of the material, the crack propagation at elevated temperatures, the influence of the geometry of the welds and the change in the properties of the material at elevated temperature), but it is relatively easy to set the exhaust system to the engine and perform a test in order to determine whether the exhaust system will develop cracks. Such systems are often better developed using traditional physical testing. Also, if the working conditions are not specified, then it is very difficult to have confidence in the results of the virtual experiment.

Application of CAD/CAE technology in designing a vehicle

Advanced technologies have a major role in designing vehicles in the automotive industry because it is possible to accurately model the desired shape of a vehicle. With the use of these technologies we have an overview in the design phase, because creating 3D parts in the space provides an ideal insight into geometry, keeping in mind that the body of the vehicle itself has a large number of parts, the defined elements are easily grouped into assemblies and sub-assemblies.

Figure 2. An overview of a vehicle design development, [3]

With the help of technologies the creation of vehicle's CAE technology has also been used in the simulation of crash appearance is accelerated, it is possible to create desired view at the drawing, the expenses of probing the body of the car are reduced, the co-operation of co-workers is simplified etc. to rigorous and precise testing requirements, as well as These models are significant because they allow the prototypes of vehicles being tested, CAE technology comparison of the quality of all parts of a vehicle. The design phase itself is not so simple – there are several phases that testing, which is very useful and is possible to perform have to be completed and these technologies allow all this to be done virtually, which is much simpler and cheaper. Figure 2 shows the stages in the designing of a vehicle.

----Benefits of CAD/CAE technology when analyzing vehicle's design

Not only is CAD technology important in designing vehicles, but its role is substantial in testing of a design, that is, it simplifies the testing of a known design. The importance of aerodynamics, the flow of air over the surface of a vehicle is very well known. Air resistance plays a very important role in all resistances, therefore it is a priority to maximize the aerodynamics of a vehicle.

With the help of these technologies it can be accurately determined which points on the vehicle are critical, and certain parts of a vehicle can be reconstructed if there is a suspicion that air spinning is increased. The use in these cases is very important because it is possible to reconstruct the design of a vehicle without expensive aerotunels and without the prototype, which greatly reduces the cost, and consequently lack of prototype saves time in the vehicle development. Figure 3 shows the look of a test using one of the technologies.

Figure 3. A demonstration of a vehicle's aerodynamic testing, [4]

tests or in vehicle's body safety checks. These tests are very expensive and require specialized testing centers. In addition produces precise results of vehicle deformation during corrections to the virtual model of the vehicle with reduced cost of testing and time saving. Figure 4 shows an example of this test.

Figure 4. Safety test of the body of a vehicle, [5] - Application of CAD/CAE technology to check vehicle's ergonomic characteristics

Ergonomic characteristics of vehicles are significant for the reduction of fatigue and facilitation of car driving. One of the software that is developed according to the principles of CAE technology is RAMSIS. RAMSIS is the world-leading 3D-CADergonomics tool, designed in cooperation with the German automobile industry for the ergonomic development of vehicles and cockpits.

Ergonomics is increasingly seen as a quality factor by the customer and it is becoming a significant differentiation criteria. RAMSIS is the world's leading CAD tool for the ergonomics design and analysis of vehicle's interior design and analysis of vehicle interior and working places and is used by 70% of the automobile manufacturers [6]. This software package allows you to check the ergonomic characteristics of the vehicle, or the comfort of the driver or other passengers in vehicles. RAMSIS is not only available to the user as a pure CAD application (e.g. integrated into CATIA or as stand-alone version) - as RAMSIS and VR, this ergonomics system can also be used for extensive real-time tests in virtual reality laboratories of automotive manufacturers.

Figure 5 shows the example of a driver in the vehicle and one of the possible analysis of the driver's comfort at a particular driver's position in the vehicle.

	Body Kegic			
	- Legs	Distantiand		
1	Davat	L Right Har	10	LI Whole Body
	Short Name Name Utilization (%)			
	GHUR	hip-joint-r	76	action (ray
	GKNR	knee-joint-r	50	
	GSPR	ankle-joint-r	40	
	GFBR	ball-joint-r	0	
	GHUL	hip-joint-l	76	
L	GKNL	knee-joint-l	62	
	GSPL	ankle-joint-l	40	
Ŀ	GFBL	ball-joint-l	0	

Figure 5. The analysis of the driver's comfort in the vehicle and the analysis in the CAE software

 — Significance of CAE technology in examining the elements of passive interior safety

Bearing in mind the previously mentioned concern regarding the ergonomics of the vehicle, which in this case concerns the interior of the vehicle, the application of CAE technology is very important in the examination of the operation of individual elements of passive safety, such as an airbag, which, in the case of a traffic accident, should prevent the driver from hitting the steering wheel or other element of the interior.

Figure 6 shows an example of an analysis of driver's impact in the airbag. This application is very important in the analysis of the position and shape of the airbag, because it replaces long-term and highly complex physical work about driver's impacts in the airbag, as well as analysis of the shape and

position of the impact, baring in mind that passengers can be found in different positions in a traffic accident.

Figure 6. A demonstration of the analysis of driver's impact in the air bag by using CAE technology, [7]

 The importance of CAE technology in testing the performance and efficiency of certain systems in vehicle

In addition to benefits of all previously shown elements regarding ergonomics of the vehicle, CAE technology also enables the display of the flow of certain fluids through the various systems on the vehicle. CAE technology is used for testing air conditioning system (AC).

Figure 7. Demonstration of air flow simulation using CAE technology, [8]

Figure 7 shows a simulation of the operation and flow of air **CONCLUSIONS**

using this technology. With CAE, the flow of air in the vehicle Nowadays, product development is a very complex process is accurately determined as well as the impact on air temperatures in different vehicle zones. CAE simplifies tests of the validity of the operation of this system without complex certain means. The development in the automotive industry experiments or expensive equipment. It is also possible to follows this trend, given the characteristics of today's vehicles. complete a simulation of cooling down of the engine or the There are several stages in which it is possible to develop air flow in the engine compartment.

projecting vehicle's propulsion unit

internal combustion engines (ICE) cannot begin without an adequate verification of the idea which is the first and most important stage in this business. Modern motors are mostly made by improving the existing ones, that is, by modernizing older solutions using software tools. Captured parameters are put into the appropriate software that through a complex mathematical model mimics complex physical and chemical processes in the engine. When such constructed engine is put into propulsion, the parameters of the monocylinder operation (engine indication) are collected, on which basis a mathematical model is developed and is further processed on the computer.

laws of thermodynamics, fluid mechanics, chemical kinetics and other sciences. Depending on the type of engine on which it is operated (two-stroke, four-stroke, slow-moving, high-speed, diesel, otto-engine, etc.), the appropriate software is selected to mimic the given engine.

in the engine can be modeled and calculated using a computer, that motor parts can be "made" on the computer and that the engine itself, ie, its assemblies and subassemblies This paper is based on the paper presented at 7th can be successfully simulated on the computer, we come to the concept of "virtual" engine. It means that the engine can be engineered, simulated, and tested on a computer before making the real prototype and testing it. The programs display the gas temperature during the operation of the References virtual engine, as well as the temperature assumptions that [1] certain mechanical parts of the engine are subjected to.

Thus, the constructor is able to monitor the flow of temperature, pressure and flow rate of gas, and to optimize it with various interventions on the virtual engine. After the thermodynamic calculation and the first modeling stage [2] provide the approximate dimensions and shapes of the motor parts, thorough examination is performed on several types of strains, which during the modeling give an insight about overloads and possible distruction of elements. Finite Element Methods (FEMs) are used today.

On the basis of these calculations, computers perform complicated analyzes, solve problems straight away and allow easy change of engine performance parameters, saving [4] both time and money.

because modern products are more elaborate since there is a demand to maximize efficiency with minimal consumption of them.

- The importance of CAD/CAE application while The use of various modern software such as CAD and CAE technology, enables us to perform various researches very Nowadays, the process of designing and manufacturing effectively and efficiently, and it is possible to test different modifications in order to improve the characteristics and develop them. The benefit of these systems is that they enable faster and cheaper research and development of the vehicle.

The adoption of this technoloav allows better communication between all members of the vehicle development team, because each problem can be graphically displayed, better production of technical documentation, possible repetition of each simulation or research with the possibility to change the model itself, at minimal cost, the possibility to test one vehicle or its elements several times under different conditions, it is not necessary to Mathematical models of the engine are made based on the create a prototype for testing, it eliminates the need for expensive test equipment, allows designers to inspect all faults on a vehicle or system.

Compared to physical experiments, which are carried out in real conditions and environment, the virtual experiments may have certain disadvantages, however, they are quite Having in mind that most of the processes and phenomena developed and can simulate real conditions, and they will continue to develop and eliminate their drawbacks.

Note

International Conference Industrial Engineering and Environmental Protection 2017 - IIZS 2017, organized by University of Novi Sad, Technical Faculty "Mihajlo Pupin", in Zrenjanin, SERBIA, 12 – 13 October 2017.

- Wang, Donghui; Hu, Fan; Ma, Zhenyu; Wu, Zeping; Zhang Weihua, A CAD/CAE integrated framework for structural design optimization using sequential approximation optimization, Advances in Engineering Software, Volume: 76 Issue 1 (2014)
- Letić, D., Davidović, B., Radulović, B., Berković, I., Desnica, E., The high-performance algorithm of the computer methods at the establishing of the states of stress of the brake mechanism by the finite element method (fem), Metalurgija 51 (4) 2012., pp. 513–517, ISSN 0543-5846
- [3] Tovey M., Concept design CAD for the automotive industry, Journal of Engineering Design. Mar2002, Vol. 13 Issue 1, p5-18. 14p, ISSN: 0954-4828, 2002.

Aerodinamičnost,

https://www.google.rs/imgres?imgurl=http://www2.m ech.kth.se/courses/5C1211/

- [5] Ispitivanje bezbednosti vozila, http://www.digitaleng.news/de/improving-productdevelopment-with-cae/, 29.07.2017
- [6] RAMSIS, http://www.intrinsys.com/software/ramsis?src=applied , 30.07.2017.
- [7] Ispitivanje vazdušnog jastuka, http://training.vcollab.com/CAE_Display_VectorPlot_Pr o.html, 30.07.2017.
- [8] A/C, http://www.theseus-fe.com/applicationareas/automotive/electromobility . 31.07.2017.

copyright © University POLITEHNICA Timisoara, Faculty of Engineering Hunedoara, 5, Revolutiei, 331128, Hunedoara, ROMANIA <u>http://acta.fih.upt.ro</u>