# ACTA TECHNICA CORVINIENSIS

- Bulletin of Engineering Tome IX [2016], Fascicule 3 [July - September] ISSN: 2067 - 3809



1. Tamás MOLNÁR, 2. Ferenc FARKAS

# THE EXAMINATION OF THE COMPOSITION OF WASTE TAKEN TO THE REFUSE DUMP

1-2. University of Szeged, Faculty of Engineering, Szeged, HUNGARY

Abstract: The communal solid waste refuse dump of the "A·S·A Hódmezővásárhely Köztisztasági Ltd." Is located on the outskirts of Hódmezővásárhely on the area No. 01957/1. The refuse dump is situated south of Hodmezovasarhely, west of no. 4414 road, about 5-6 kilometres from the centre. In terms of public service obligation the communal solid waste of Hódmezővásárhely and six other settlements is taken to the refuse dump (Csanytelek, Mindszent, Mártély, Földeák, Békéssámson, Makó, Nagyér), its area of responsibility is 200.000 people. It is operating in accordance with the Waste Management Law of 2000 No. XLIII and the related legislation and the public service contracts signed with the municipalities. The refuse dump and its facilities are built on the basis of an impact assessment of 1994. The refuse dump of Hódmezővásárhely is situated on 20 ha of land and the top height of the landfill is 30m. The refuse dump can store 3,9 million m3 of refuse and will provide environment friendly storage for the refuse of Hódmezővásárhely and its environs for 50 years. The refuse dump is provided with technical protection, leachate collection system and landfill gas drainage system constructed on the base of Austrian standards. Its cultivation is done by heapmaking technology. Based on the permission of ATIKÖFE the waste that may be delivered to the refuse dump are the following: household waste, not hazardous industrial waste, sewage sludges, debris and soil.

Keywords: landfill gas, alternative energy, environmental conditions, EWC codes, waste composition

# INTRODUCTION

Hódmezővásárhely refuse Ltd.'s second and third sub landfill sites where I analysed the unloaded waste. biodegradable proportion in the refuse dump. When laving down the boundaries of the areas for the surveys it had to be taken into consideration where the waste is produced. The areas covered in the examination are the following:

- ≡ Hódmezővásárhely public domain,
- Hódmezővásárhely downtown,
- **■** Hódmezővásárhely suburb.

This method represents the waste composition for the entire landfill site. During the examination I examined the first loads which arrived each day. On the basis of the entire daily delivery the composition of the total amount of waste can be concluded. Due to this the waste delivered within a day is **EWC** codes. aggregated by Hódmezővásárhely Ltd. carried out the compulsory winter, sping, summer and autumn monitoring provided in the standard environmental performance permissions by the notice of the As the result of the waste analysis by MSZ 21976 Environmental inspectorates (Table 1). Waste composition examination was made by MSZ

21420-28 and MSZ 21420-29 standards where I The The examination was carried out on the A.S.A. divided the total waste into 13 fractions and their fractions and from these I specified

> Table 1. The amount of waste covered in the examination of waste composition in 2007

|   |                                           | winter<br>3. site | spring<br>2. site | summer 3. site | autumn<br>1. site |
|---|-------------------------------------------|-------------------|-------------------|----------------|-------------------|
| A | Gross mass of the collecting vehicle [kg] | 11540 kg          | 28220 kg          | 11540 kg       | 28220 kg          |
| В | Raw nett<br>mass [kg]                     | 1040 kg           | 11740 kg          | 1040 kg        | 11740 kg          |
| С | C Mass of average sample [kg]             | 504,7kg           | 499,57kg          | 501,5kg        | 503,5kg           |

# WASTE POTENTIAL GENERATED IN THE REGION OF HÓDMEZŐVÁSÁRHELY

standard to determine the biodegradable organic matter content of municipal waste it can be stated that 53% of the total collected amount (19.322.24





tons) of solid municipal waste (EWC 200301), that waste and its physical characteristics, degradation is 10240.78 tons can be considered biodegradable conditions and the consistency of waste. and it can be considered as biomass potential. (Table Amount 2) Usable biomass potential and speculative landfill Hódmezővásárhely refuse dump: Vt [m³/t waste] gas yields produced from municipal waste from according to Tabasaran/Rettenberge formula: Hódmezővásárhely and its region for 2007 are shown in table 3.

Table 2. Amount of municipal waste by A.S.A. weight data

| aata  |                 |            |              |  |  |  |  |  |  |
|-------|-----------------|------------|--------------|--|--|--|--|--|--|
| Year  | Household waste | Industrial | Construction |  |  |  |  |  |  |
| 1 Cal | (t)             | waste(t)   | waste (t)    |  |  |  |  |  |  |
| 2005  | 31 071,33       | 13 516,56  | 11 414,32    |  |  |  |  |  |  |
| 2006  | 28 203,54       | 14 517,83  | 19 355,94    |  |  |  |  |  |  |
| 2007  | 19 322,24       | 21 201,81  | 36 599,36    |  |  |  |  |  |  |
| 2008  | 19 253,24       | 20 930,55  | 14 192,47    |  |  |  |  |  |  |
| 2009  | 20 974,66       | 17 403,90  | 12 479,42    |  |  |  |  |  |  |
| 2010  | 36 646,02       | 21 364,48  | 12 982,00    |  |  |  |  |  |  |
|       | Sewage          | Oily       | All          |  |  |  |  |  |  |
|       | sludge (t)      | waste(t)   | (t)          |  |  |  |  |  |  |
| 2005  | 3 209,93        | 11 970,97  | 71 183,11    |  |  |  |  |  |  |
| 2006  | 4 691,90        | 10 796,56  | 77 565,77    |  |  |  |  |  |  |
| 2007  | 3 396,94        | 10 481,13  | 91 001,48    |  |  |  |  |  |  |
| 2008  | 2 565,82        | 10 334,30  | 67 276,38    |  |  |  |  |  |  |
| 2009  | 2 984,42        | 6 888,89   | 60 731,29    |  |  |  |  |  |  |
| 2010  | 2 452,29        | 11 423,96  | 84 868,75    |  |  |  |  |  |  |

Table 3. Produced municipal waste by areas and energy recovery

| Area             | Biomass<br>potential<br>[t] | Landfill<br>gas<br>recovery<br>[m³/t] | Landfill<br>gas<br>produced<br>[m³] | Landfill<br>gas<br>caloric<br>value<br>[MJ/m³] |
|------------------|-----------------------------|---------------------------------------|-------------------------------------|------------------------------------------------|
| Hmvhely          | 7574,94t                    | 256                                   | 1.939.184                           | 21                                             |
| Mindszent        | 826,36t                     | 256                                   | 211.456                             | 21                                             |
| Mártély          | 151,04t                     | 256                                   | 38.666                              | 21                                             |
| Székkutas        | 188,34t                     | 256                                   | 48.215                              | 21                                             |
| Green<br>waste   | 1500t                       | 190                                   | 285.000                             | 21                                             |
| Sewage<br>sludge | 713,16t                     | 310                                   | 221.079                             | 21                                             |
| Oily waste       | 524t                        | 190                                   | 99.560                              | 21                                             |
| All              | 11477,94t                   |                                       | 2.843.160                           | 21                                             |

Speculative amount of landfill gas produced from municipal waste is 2,244,424 m<sup>3</sup>. During my calculations I considered the most favorable yield, 

Composition of waste in 2007 spring which are the following: municipal waste 256m<sup>3</sup>/t, sewage sludge 310m<sup>3</sup>/t, oily waste 190m<sup>3</sup>/t, green wastes 190 m<sup>3</sup>/t. The amount of landfill gas produced depends on the composition of the waste and is 40~300m<sup>3</sup>/t (by organic content of waste), by practical experience the actual amount of landfill gas that can be produced is 2-3 m<sup>3</sup>/t annually. It has to be considered that depending on the gas convey system and its operation only 30~50% of the total amount of landfill gas can be utilized. Differences between theoretical and practical amounts can be because of the changes of the environmental parameters, the organic matter content of waste, the type and composition of the

landfill of gas generated

$$V_t = 1.868 \cdot \text{Co} \cdot (0,014 \cdot \text{T} + 0,28) \cdot (1-10^{-kt})$$
[Tabasaran/ Rettenberger, 1987]

Co: proportion of organic carbin of waste [kg/t waste], 1.868: gas production of organic matter  $[m^3/kg]$ ,

T: waste temperature [ $^{\circ}$ C], k[ $^{\circ}$ ]: degradation constant, t: time [year]

### EXAMINATION RESULTS OF THE **ORGANIC** MATTER CONTENT OF THE DELIVERED WASTE

# **■** Composition of waste in 2007 winter

The mass of the waste at the primary sorting was 504,7 kg, the weight of waste remaining on the upper sieve (D>100) was 146,2 kg, the weight of biodegradable waste was 5,4 kg (3.7%) and there was 31,5 kg paper (21,5%) (Diagram 1).At the secondary sorting the mass of waste was 358,5 kg, the weight of waste remaining on the middle sieve (20<D<100) was 42,55 kg, the sample diminution ratio is 8,425. During secondary sorting the weight of biodegradable waste was 22,1 kg (51.9%) and the weight of paper was 1,5 kg (3.5%).

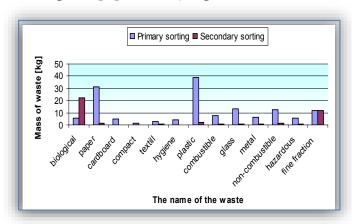



Diagram 1. Composition of remaining waste on the upper and middle sieve examination results

The mass of waste at the primary sorting was 499,5 kg, the weight of waste remaining on the upper sieve (D>100) was 196,35 kg, the weight of biodegradable waste was 22,6 kg (11,5%) and there was 48,5 kg paper (24,7%) (Diagram 2). At the secondary sorting the mass of waste was 303,5 kg, the weight of waste remaining on the middle sieve (20<D<100) was 40,1 kg, the sample diminution ratio is 7.56. During secondary sorting the weight of biodegradable waste was 6,9 kg (17.2%) and the weight of paper was 8,2 kg (20.6%).

# **≡** Composition of waste in 2007 summer

The mass of waste at the primary sorting was 501,5 kg, the weight of waste remaining on the upper sieve (D>100) was 160.5 kg, the weight of  $\equiv$  Composition of waste in 2007 autumn biodegradable waste was 16,8 kg (10,5%) and there The mass of waste at the primary sorting was 503,5 was 36,1 kg paper (22,5%) (Diagram 3).

At the secondary sorting the mass of waste was 341 kg, the weight of waste remaining on the middle biodegradable waste was 22,5 kg (12,1%) and there sieve (20<D<100) was 41,5 kg, the sample diminution ratio is 8,21. During secondary sorting the weight of biodegradable waste was 11,62 kg (28,1%) and the weight of paper was 7,4 kg (18%).

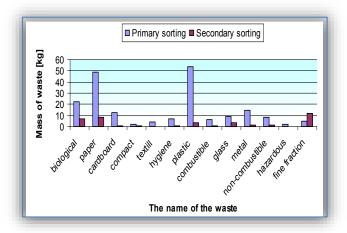



Diagram 2. Composition of remaining waste on the upper and middle sieve examination results

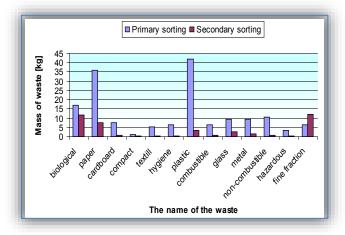



Diagram 3. Composition of remaining waste on the upper and middle sieve examination results

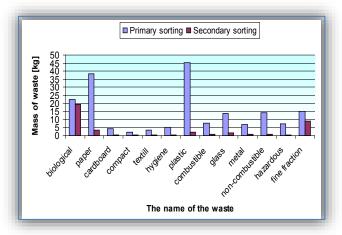



Diagram 4. Composition of remaining waste on the upper and middle sieve examination results

kg, the weight of waste remaining on the upper sieve (D>100) was 186,5 kg, the weight of was 38,24 kg paper (20,5%) (diagram 4). At the secondary sorting the mass of waste was 317 kg, the weight of waste remaining on the middle sieve (20<D<100) was 40,6 kg, the sample diminution ratio is 7,80. During secondary sorting the weight of biodegradable waste was 19.4 kg (48%) and the weight of paper was 3,37 kg (8,3%).

The determining factor of the biodegradable waste is the household waste and the green waste. Sewage sludge contains 30% of degradable organic matter, but municipal waste contains only 3-4% so it does not change significantly the organic matter concentration. Oily waste does not change the organic matter concentration either, as it can cause only about 1.5% concentration rise with the permitted oil concentration by the Environment Performance permission.

### **DISCUSSION**

In our country and world-wide the amount of waste is growing rapidly due to economic development. It is true that the amount of selectively collected waste is also increasing and also the quantities of secondary materials as recycled materials quantities - so they can get back into the manufacturing process – however it is an important task to dispose of the waste at an up-todate and environmentally friendly location. The other aspect is to protect the environment, and therefore use measures and technologies, which provide possibility for minimizing the potential environmental problems during the placement and disposal of waste.

### **CONCLUSIONS**

In the recent years in Hungary the continuous increase of solid waste, as a result of private consumption, has become a serious issue. In Hungary currently about 23 million m<sup>3</sup> solid urban waste is formed annually. Sixty-two percent (62%) of this waste is household waste and the remaining is waste produced at institutions or service providers which can be treated together with the household waste. Waste management plays a key role in the quality of environment, protecting natural resources and developing environmental security. There can be two basic environmentally harmful effects of waste disposal. One of them is leachate, which percolates through the deposited waste and pollutes ground water, the other is the landfill gas from decomposed organic materials. Landfill sites should have deponia gas discharge duct system in order to comply with the environmental standards. Overall, in a particular

# ACTA TEHNICA CORVINIENSIS – Bulletin of Engineering

landfill, the meteorological parameters are always changing; the organic matter input parameters are characteristic of the region therefore the extraction efficiency can only be changed by the control of the exhaust capacity. Therefore, research has great importance in this area of research to show which landfill gas parameters are generated with the climatic parameters and organic matter intake.

### Note

This paper is based on the paper presented at International Conference on Science and Technique based on Applied and Fundamental Research – ICoSTAF 2016, organized by University of Szeged, Faculty of Engineering, in Szeged, HUNGARY, 2 June 2016

## References

- [1] BAI, A.(2007): A biogáz; Száz Magyar Falu Könyvesháza Kht., Budapest
- [2] CHRISTENSEN, TH.H ~KJELDSEN, P. (1989):Basic biochemical process in landfills Sanitary Landfilling (ed.: CHRISTENSEN, TH.H.~COSSU, R.~STEGMANN, R.) Academic Press, pp. 29-48.)
- [3] Molnár T. (2007): Quantitative and qualitive analysis of the biogas production from the municipal solid waste, Hungarian Agricultural Engineering NO 20/2007, pp. 20-22, HU ISSN 0864-7410.
- [4] Molnár T. (2009) The impact of the weather conditions for the parameter of the production of landfillgas, Hungarian Agricultural Engineering NO 22/2009, pp. 91-94, HU ISSN 0864-7410.
- [5] Molnár T. (2015) Changes of methane content of landfill gas with regard to different wind speed interval, Hungarian Agricultural Engineering NO 27/2015, pp. 20-23-94, HU ISSN 0864-7410.
- [6] STACHOWITZ, W. H. (2004): "Berechnung" oder Abschätzungen von Gasproduktionsmengen Gasprognose
- [7] SVÁB, J. (1981): Biometriai módszerek a kutatásban, Mezőgazdasági Kiadó, ISBN 9632310136, p.50-51., Budapest
- [8] TABASARAN, O. (1981):Gas production from landfill. In: Bridgewater AV, Lidgren K, editors. Household waste management in Europe, economics and techniques. New York: Van Nostrand Reinhold Co.; 1981. p. 159–75.





ISSN:2067-3809

copyright ©
University POLITEHNICA Timisoara,
Faculty of Engineering Hunedoara,
5, Revolutiei, 331128, Hunedoara, ROMANIA
<a href="http://acta.fih.upt.ro">http://acta.fih.upt.ro</a>