ACTA TECHNICA CORVINIENSIS

- Bulletin of Engineering

Tome IX [2016], Fascicule 3 [July - September]
ISSN: 2067-3809
${ }^{1}$.István ECSEDI, ${ }^{2}$.ákos József LENGYEL

ANALYSIS OF BIMETALLIC BEAM WITH WEAK SHEAR CONNECTION

1-2. Institute of Applied Mechanics, University of Miskolc, H~3515 Miskolc~Egyetemváros, HUNGARY

Abstract

In this paper an analytical solution is presented to determine the deflection, slip and stresses in

 bimetallic beam with flexible shear connection. The thermal load is derived from uniform temperature change. The Euler Bernoulli hypothesis is assumed to hold for each layer separately and a linear constitutive equation between the horizontal slip and the inter-laminar shear force is considered. An example illustrates the application of the developed analytical method.Keywords: bimetallic beam, interlayer slip, shear connection, thermal load

INTRODUCTION

There exist several works on bimetallic elastic beams with perfect bond [$1,2,3,4,5$]. In this paper the bimetallic beam with weak shear connection under the action of uniform temperature change is studied. The present analytical method is based on the Euler-Bernoulli's beam theory and the one~ dimensional version of the constitutive equation of linear thermoelasticity (Duhamel-Neumann's law). The considered bimetallic beam configuration is shown in Figure 1.

Figure 1. Simply supported bimetallic beam
expansion is $\alpha_{i}(i=1,2)$. The length of the simply supported bimetallic beam is L. The origin O of the rectangular Cartesian coordinate system $O x y z$ is the E-weighted centre of the left end cross section, so that axis z is the $E \sim$ weighted center line of the bimetallic beam. A point P in $B=B_{1} \cup B_{2}$ is indicated by the position vector $\overrightarrow{O P}=\mathbf{r}=\mathbf{R}+z \mathbf{e}_{z}=x \mathbf{e}_{x}+y \mathbf{e}_{y}+z \mathbf{e}_{z}$, where $\mathbf{e}_{x}, \mathbf{e}_{y}$ and \mathbf{e}_{z} are the unit vectors of the coordinate system Oxyz. It is known that the position of E-weighted centre of the cross section $A=A_{1} \cup A_{2}$ is obtained from next equation [6]

$$
\begin{equation*}
E_{1} \int_{A_{1}} \mathbf{R} \mathrm{~d} A+E_{2} \int_{A_{2}} \mathbf{R} \mathrm{~d} A=\mathbf{0} . \tag{1}
\end{equation*}
$$

For cross section shown in Figure 1 we have

$$
\begin{align*}
& c_{1}=\left|\overrightarrow{C C_{1}}\right|=\frac{A_{2} E_{2}}{\langle A E\rangle} c, \quad c_{2}=-\left|\overrightarrow{C C_{2}}\right|=-\frac{A_{1} E_{1}}{\langle A E\rangle} c, \tag{2}\\
& c=\left|\overrightarrow{C_{2} C_{1}}\right|=c_{1}-c_{2}=\frac{1}{2}\left(h_{1}+h_{2}\right), \tag{3}\\
& \langle A E\rangle=A_{1} E_{1}+A_{2} E_{2}, \tag{4}
\end{align*}
$$

$$
\begin{equation*}
y_{1}=c_{1}+\frac{1}{2} h_{1}, \quad y_{2}=c_{2}-\frac{1}{2} h_{2}, \quad y_{12}=c_{1}-\frac{1}{2} h_{1} . \tag{5}
\end{equation*}
$$

The beam component B_{i} has the rectangular cross In Eqs. (2), (4) A_{i} denotes the cross sectional area section A_{i} whose dimensions are h_{i} and $b(i=1,2)$ of beam component $B_{i}(i=1,2)$ and the position of . The modulus of elasticity for beam component B_{i} the common boundary of A_{1} and A_{2} is indicated by is E_{i} and the coefficients of linear thermal y_{12} (Figure 1).

ACTA TEHNICA CORVINIENSIS
 - Bulletin of Engineering

GOVERNING EQUATION

According to the Euler-Bernoulli hypothesis (kinematic assumption) which is valid for each homogeneous beam components the deformed configuration is described by the displacement field [6]

$$
\begin{equation*}
\mathbf{u}=\mathbf{u}(x, y, z)=v(z) \mathbf{e}_{y}+\left(w_{i}(z)-y \frac{\mathrm{~d} v}{\mathrm{~d} z}\right) \mathbf{e}_{z}, \tag{6}
\end{equation*}
$$

where $(x, y, z) \in B_{i},(i=1,2)$. Eq. (6) shows that the axial displacement of beam component $B_{i}(i=1,2)$ is separated into two parts: $w_{i}(z) \quad(i=1,2)$ describes the rigid translation of the cross section A_{i} $(i=1,2)$ at z and the second part of the axial displacement of $A_{i} \quad(i=1,2)$ derived from the deflection of cross section [6]. On the common boundary of B_{1} and B_{2} the axial displacement has jump which is called the interlayer slip. According to Eq. (6) the interlayer slip $s=s(z)$ can be computed as

$$
\begin{equation*}
s(z)=w_{1}(z)-w_{2}(z) . \tag{7}
\end{equation*}
$$

Application of the strain-displacement relationships of the linearized theory of elasticity gives

$$
\begin{gather*}
\varepsilon_{x}=\varepsilon_{y}=\gamma_{x y}=\gamma_{x z}=\gamma_{y z}=0, \quad(x, y, z) \in B_{1} \cup B_{2}, \tag{8}\\
\varepsilon_{z}=\frac{\mathrm{d} w_{i}}{\mathrm{~d} z}-y \frac{\mathrm{~d}^{2} v}{\mathrm{~d} z^{2}}, \quad(x, y, z) \in B_{i},(i=1,2) . \tag{9}
\end{gather*}
$$

In Eqs. (8), (9) $\varepsilon_{x}, \varepsilon_{y}, \varepsilon_{z}$ are the normal strains and $\gamma_{x y}, \gamma_{x z}, \gamma_{y z}$ are the shearing strains. The normal stress σ_{z} is computed from the one~ dimensional version of Duhamel-Neumann's law [3,4]

$$
\begin{equation*}
\sigma_{z}=E_{i}\left(\frac{\mathrm{~d} w_{i}}{\mathrm{~d} z}-y \frac{\mathrm{~d}^{2} v}{\mathrm{~d} z^{2}}-\alpha_{i} T\right), \quad(x, y, z) \in B_{1} \cup B_{2} . \tag{10}
\end{equation*}
$$

In Eq. (10) T denotes the temperature change. The temperature of the two-layer composite beam initially is the reference temperature. Its temperature is slowly raised to a constant uniform temperature, so that the temperature change is T. Following we define the next section forces and moments [6]

$$
\begin{align*}
& N_{1}=\int_{A_{1}} \sigma_{z} \mathrm{~d} A=A_{1} E_{1}\left(\frac{\mathrm{~d} w_{1}}{\mathrm{~d} z}-c_{1} \frac{\mathrm{~d}^{2} v}{\mathrm{~d} z^{2}}-\alpha_{1} T\right), \tag{11}\\
& N_{2}=\int_{A_{2}} \sigma_{z} \mathrm{~d} A=A_{2} E_{2}\left(\frac{\mathrm{~d} w_{2}}{\mathrm{~d} z}-c_{2} \frac{\mathrm{~d}^{2} v}{\mathrm{~d} z^{2}}-\alpha_{2} T\right), \tag{12}\\
& M_{1}=\int_{A_{1}} y \sigma_{2} \mathrm{~d} A=A_{1} E_{1} c_{1}\left(\frac{\mathrm{~d} w_{1}}{\mathrm{~d} z}-\alpha_{1} T\right)-E_{1} I_{1} \frac{\mathrm{~d}^{2} v}{\mathrm{~d} z^{2}}, \tag{13}
\end{align*}
$$

$$
\begin{equation*}
M_{2}=\int_{A_{2}} y \sigma_{z} \mathrm{~d} A=A_{2} E_{2} c_{2}\left(\frac{\mathrm{~d} w_{2}}{\mathrm{~d} z}-\alpha_{2} T\right)-E_{2} I_{2} \frac{\mathrm{~d}^{2} v}{\mathrm{~d} z^{2}}, \tag{14}
\end{equation*}
$$

where

$$
\begin{equation*}
I_{i}=\int_{A_{i}} y^{2} \mathrm{~d} A, \quad(i=1,2) . \tag{15}
\end{equation*}
$$

Eqs. (11), (12), (13) and (14) show that the normal stresses acting on cross section $A_{i}(i=1,2)$ are equivalent to a force-couple system $\left(N_{i}, M_{i}\right)$ $(i=1,2)$ at C. This force-couple system $\left(N_{i}, M_{i}\right)$ $(i=1,2)$ is illustrated in Figure 2. The interlayer slip s is assumed to be a linear function of shear force Q transmitted between the two beam components, that is we have [7]

$$
\begin{equation*}
Q=k s \tag{16}
\end{equation*}
$$

where k is a constant, it is called slip modulus. Units of Q and k are

$$
\begin{equation*}
[Q]=\frac{\text { force }}{\text { length }},[k]=\frac{\text { force }}{(\text { length })^{2}} . \tag{17}
\end{equation*}
$$

Figure 2. Normal forces and bending moments In present problem there is no axial force $N=N_{1}+N_{2}$, that is

$$
\begin{equation*}
N=N_{1}+N_{2}=A_{1} E_{1} \frac{\mathrm{~d} w_{1}}{\mathrm{~d} z}+A_{2} E_{2} \frac{\mathrm{~d} w_{2}}{\mathrm{~d} z}-\langle A E \alpha\rangle T=0 . \tag{18}
\end{equation*}
$$

Here,

$$
\begin{equation*}
\langle A E \alpha\rangle=A_{1} E_{1} \alpha_{1}+A_{2} E_{2} \alpha_{2} . \tag{19}
\end{equation*}
$$

From Eqs. (7) and (18) it follows that

$$
\begin{align*}
& \frac{\mathrm{d} w_{1}}{\mathrm{~d} z}=\frac{A_{2} E_{2}}{\langle A E\rangle} \frac{\mathrm{d} s}{\mathrm{~d} z}+\frac{\langle A E \alpha\rangle}{\langle A E\rangle} T, \tag{20}\\
& \frac{\mathrm{~d} w_{2}}{\mathrm{~d} z}=-\frac{A_{1} E_{1}}{\langle A E\rangle} \frac{\mathrm{d} s}{\mathrm{~d} z}+\frac{\langle A E \alpha\rangle}{\langle A E\rangle} T . \tag{21}
\end{align*}
$$

A simple computation based on Eqs. (11), (12) and Eqs. (20), (21) gives

$$
\begin{align*}
& N_{1}=\langle A E\rangle_{-1}\left[\frac{\mathrm{~d} s}{\mathrm{~d} z}-c \frac{\mathrm{~d}^{2} v}{\mathrm{~d} z^{2}}+\left(\alpha_{2}-\alpha_{1}\right) T\right], \tag{22}\\
& N_{2}=\langle A E\rangle_{-1}\left[-\frac{\mathrm{d} s}{\mathrm{~d} z}+c \frac{\mathrm{~d}^{2} v}{\mathrm{~d} z^{2}}+\left(\alpha_{1}-\alpha_{2}\right) T\right], \tag{23}
\end{align*}
$$

where

$$
\begin{equation*}
\langle A E\rangle_{-1}=\frac{1}{\frac{1}{A_{1} E_{1}}+\frac{1}{A_{2} E_{2}}} . \tag{24}
\end{equation*}
$$

Application of the condition of equilibrium for forces in axial direction to beam component B_{1} gives (Figure 3)

Figure 3. Equilibrium condition in z direction for a small beam element ΔB_{1}

$$
\begin{equation*}
\frac{\mathrm{d} N_{1}}{\mathrm{~d} z}-k s=0 . \tag{25}
\end{equation*}
$$

Substitution of Eq. (22) into Eq. (25) yields

$$
\begin{equation*}
\frac{\mathrm{d}^{2} s}{\mathrm{~d} z^{2}}-c \frac{\mathrm{~d}^{3} v}{\mathrm{~d} z^{3}}-\frac{k}{\langle A E\rangle_{-1}} s=0 . \tag{26}
\end{equation*}
$$

It is evident the bending moment acting on the whole cross section $A=A_{1} \cup A_{2}$ is as follows

$$
\begin{gather*}
M=M_{1}+M_{2}= \\
=c\langle A E\rangle_{-1}\left[\frac{\mathrm{~d} s}{\mathrm{~d} z}+\left(\alpha_{2}-\alpha_{1}\right) T\right]-\{I E\} \frac{\mathrm{d}^{2} v}{\mathrm{~d} z^{2}} . \tag{27}
\end{gather*}
$$

Here,

$$
\begin{equation*}
\{I E\}=I_{1} E_{1}+I_{2} E_{2} \tag{28}
\end{equation*}
$$

There is no applied mechanical load on the whole two layer composite beam and at both supports there are not any reaction forces, so that

$$
\begin{equation*}
M(z)=0, \quad V(z)=\frac{\mathrm{d} M}{\mathrm{~d} z}=0 \tag{29}
\end{equation*}
$$

for all cross section. In Eq. (29) ${ }_{2} V=V(z)$ is the cross~sectional shear force. From Eq. (29) 2 we get

$$
\begin{equation*}
\frac{\mathrm{d}^{3} v}{\mathrm{~d} z^{3}}=c \frac{\langle A E\rangle_{-1}}{\{I E\}} \frac{\mathrm{d}^{2} s}{\mathrm{~d} z^{2}} . \tag{30}
\end{equation*}
$$

Combination of Eq. (26) with Eq. (30) gives

$$
\frac{\mathrm{d}^{2} s}{\mathrm{~d} z^{2}}-\Omega^{2} s=0
$$

where

$$
\begin{equation*}
\Omega^{2}=k \frac{\{I E\}}{\langle A E\rangle_{-1}\langle I E\rangle}, \quad\langle I E\rangle=\{I E\}-c^{2}\langle A E\rangle_{-1} . \tag{32}
\end{equation*}
$$

DETERMINATION OF THE SLIP AND DEFLECTION

For the simply supported bimetallic beam shown in Figure 1 the following boundary conditions are valid

$$
\begin{array}{ll}
v(0)=0, & v(L)=0, \\
N_{1}(0)=0, & N_{1}(L)=0 . \tag{34}
\end{array}
$$

The boundary conditions for bending moment $M=M(z)$

$$
\begin{equation*}
M(0)=0, \quad M(L)=0 \tag{35}
\end{equation*}
$$

are satisfied according to Eq. (29). From the boundary conditions

$$
\begin{equation*}
N_{1}(0)=0, \quad M(0)=0 \tag{36}
\end{equation*}
$$

and

$$
\begin{equation*}
N_{1}(L)=0, \quad M(L)=0 \tag{37}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
\frac{\mathrm{d} s}{\mathrm{~d} z}=\left(\alpha_{1}-\alpha_{2}\right) T \tag{38}
\end{equation*}
$$

is valid for $z=0$ and $z=L$. The general solution of the differential equation (31) can be represented as

$$
\begin{equation*}
s(z)=K_{1} \cosh \Omega z+K_{2} \sinh \Omega z . \tag{39}
\end{equation*}
$$

Substitution of Eq. (39) into the boundary condition (38) leads to the next results

$$
\begin{gather*}
K_{1}=-T \frac{\alpha_{1}-\alpha_{2}}{\Omega} \tanh \frac{\Omega L}{2}, \tag{40}\\
K_{2}=T \frac{\alpha_{1}-\alpha_{2}}{\Omega} . \tag{41}
\end{gather*}
$$

From Eqs. (27), (29) 1_{1} and Eq. (39) it follows that

$$
\begin{align*}
& c\langle A E\rangle_{-1}\left[K_{1}(\cosh \Omega z-1)+K_{2} \sinh \Omega z+\right. \tag{42}\\
& \left.+\left(\alpha_{2}-\alpha_{1}\right) T z\right]-\{I E\} \frac{\mathrm{d} v}{\mathrm{~d} z}+\{I E\} K_{3}=0,
\end{align*}
$$

where

$$
\begin{equation*}
K_{3}=\left(\frac{\mathrm{d} v}{\mathrm{~d} z}\right)_{z=0} . \tag{43}
\end{equation*}
$$

Integrating of Eq. (42) gives

$$
\begin{align*}
& \{I E\}[v(z)-v(0)]=c\langle A E\rangle_{-1}\left[K_{1} \frac{\sinh \Omega z-\Omega z}{\Omega}+\right. \tag{44}\\
& \left.\quad+K_{2} \frac{\cosh \Omega z-1}{\Omega}+\frac{\alpha_{2}-\alpha_{1}}{2} T z^{2}\right]+\{I E\} K_{3} z .
\end{align*}
$$

From boundary conditions (33) we obtain

$$
\begin{align*}
& K_{3}=-\frac{c\langle A E\rangle_{-1}}{\{I E\}}\left[K_{1} \frac{\sinh \Omega L-\Omega L}{\Omega L}+\right. \tag{45}\\
& \left.+K_{2} \frac{\cosh \Omega L-1}{\Omega L}+\frac{L}{2}\left(\alpha_{2}-\alpha_{1}\right) T\right]
\end{align*}
$$

Substitution of Eq. (45) into Eq. (44) gives

$$
\begin{align*}
v(z)= & \frac{c\langle A E\rangle_{-1}}{\{I E\}}\left[K_{1}\left(\frac{\sinh \Omega z-\Omega z}{\Omega}-\frac{\sinh \Omega L-\Omega L}{\Omega L} z\right)+\right. \\
& +K_{2}\left(\frac{\cosh \Omega z-1}{\Omega}-\frac{\cosh \Omega L-1}{\Omega L} z\right)- \tag{46}\\
& \left.-\frac{\alpha_{2}-\alpha_{1}}{2} T\left(L z-z^{2}\right)\right] .
\end{align*}
$$

ACTA TEHNICA CORVINIENSIS
 - Bulletin of Engineering

Fascicule 3 [July - September]

Tome IX [2016]

COMPUTATIONS OF THERMAL STRESSES

We assume that the state of stresses of bimetallic beam can be characterized by the following stresses $\sigma_{z}=\sigma_{z}(y, z), \quad \tau_{y z}=\tau_{y z}(y, z), \quad \sigma_{y}=\sigma_{y}(y, z)$. normal stress σ_{z} is obtained from Eqs. (10) and (20) as

$$
\begin{gather*}
\sigma_{z}=E_{1}\left[\frac{c_{1}}{c} \frac{\mathrm{~d} s}{\mathrm{~d} z}-y \frac{\mathrm{~d}^{2} v}{\mathrm{~d} z^{2}}+\frac{c_{1}}{c}\left(\alpha_{2}-\alpha_{1}\right) T\right], \quad(x, y, z) \in B_{1}, \tag{47}\\
\sigma_{z}=E_{2}\left[\frac{c_{2}}{c} \frac{\mathrm{~d} s}{\mathrm{~d} z}-y \frac{\mathrm{~d}^{2} v}{\mathrm{~d} z^{2}}+\frac{c_{2}}{c}\left(\alpha_{2}-\alpha_{1}\right) T\right], \quad(x, y, z) \in B_{2} . \tag{48}
\end{gather*}
$$

Shearing stresses $\tau_{y z}=\tau_{y z}(y, z)$ is computed by the use of equation of equilibrium

$$
\begin{equation*}
\frac{\partial \tau_{y z}}{\partial y}+\frac{\partial \sigma_{z}}{\partial z}=0, \quad(x, y, z) \in B_{1} \cup B_{2} \tag{49}
\end{equation*}
$$

A detailed computation yields the next result

$$
\begin{gather*}
\tau_{y z}=-E_{2}\left[\left(y-y_{2}\right) \frac{c_{2}}{c} \frac{\mathrm{~d}^{2} s}{\mathrm{~d} z^{2}}-\frac{1}{2}\left(y^{2}-y_{2}^{2}\right) \frac{\mathrm{d}^{3} v}{\mathrm{~d} z^{3}}\right], \tag{50}\\
(x, y, z) \in B_{2}, \\
\tau_{y z}=-E_{2}\left[\left(y_{12}-y_{2}\right) \frac{c_{2}}{c} \frac{\mathrm{~d}^{2} s}{\mathrm{~d} z^{2}}-\frac{1}{2}\left(y_{12}^{2}-y_{2}^{2}\right) \frac{\mathrm{d}^{3} v}{\mathrm{~d} z^{3}}\right]- \\
-E_{1}\left[\left(y-y_{12}\right) \frac{c_{1}}{c} \frac{\mathrm{~d}^{2} s}{\mathrm{~d} z^{2}}-\frac{1}{2}\left(y^{2}-y_{12}^{2}\right) \frac{\mathrm{d}^{3} v}{\mathrm{~d} z^{3}}\right], \tag{51}\\
(x, y, z) \in B_{1} .
\end{gather*}
$$

Here, the stress boundary condition

$$
\begin{equation*}
\tau_{y z}\left(y_{2}, z\right)=0 \tag{52}
\end{equation*}
$$

and the continuity condition of $\tau_{y z}$ at $y=y_{12}$

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0}\left[\tau_{y z}\left(y_{12}-\varepsilon, z\right)-\tau_{y z}\left(y_{12}+\varepsilon, z\right)\right]=0 \tag{53}
\end{equation*}
$$

are used. To obtain the normal stress $\sigma_{y}=\sigma_{y}(y, z)$ we consider the next equation of mechanical equilibrium

$$
\frac{\partial \sigma_{y}}{\partial y}+\frac{\partial \tau_{y z}}{\partial z}=0
$$

Integration of Eq. (54) gives

$$
\begin{gathered}
\sigma_{y}=E_{2}\left[\left(\frac{y^{2}+y_{2}^{2}}{2}-y y_{2}\right) \frac{c_{2}}{c} \frac{\mathrm{~d}^{3} s}{\mathrm{~d} z^{3}}-\right. \\
\left.-\frac{1}{2}\left(\frac{y^{3}+2 y_{2}^{3}}{3}-y_{2}^{2} y\right) \frac{\mathrm{d}^{4} v}{\mathrm{~d} z^{4}}\right],(x, y, z,) \in B_{2}, \\
\sigma_{y}=E_{2}\left[\left(\frac{y_{12}^{2}+y_{2}^{2}}{2}-y_{12} y_{2}\right) \frac{c_{2}}{c} \frac{\mathrm{~d}^{3} s}{\mathrm{~d} z^{3}}-\right. \\
\left.-\frac{1}{2}\left(\frac{y_{12}^{3}+2 y_{2}^{3}}{3}-y_{2}^{2} y_{12}\right) \frac{\mathrm{d}^{4} v}{\mathrm{~d} z^{4}}\right]+ \\
+E_{1}\left[\left(\frac{y^{2}+y_{12}^{2}}{2}-y y_{12}\right) \frac{c_{1}}{c} \frac{\mathrm{~d}^{3} s}{\mathrm{~d} z^{3}}-\right. \\
\left.-\frac{1}{2}\left(\frac{y^{3}+2 y_{12}^{3}}{3}-y_{12}^{2} y\right) \frac{\mathrm{d}^{4} v}{\mathrm{~d} z^{4}}\right]-\left(y-y_{12}\right)\left(\frac{\partial \tau_{y z}}{\partial z}\right)_{y=y_{12}},
\end{gathered}
$$

$$
(x, y, z) \in B_{1} .
$$

Here, we use the stress boundary condition

$$
\begin{equation*}
\sigma_{y}\left(y_{2}, z\right)=0 \tag{57}
\end{equation*}
$$

and stress continuity condition of σ_{y} at $y=y_{12}$

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0}\left[\sigma_{y}\left(y_{12}-\varepsilon, z\right)-\sigma_{y}\left(y_{12}+\varepsilon, z\right)\right]=0 \tag{58}
\end{equation*}
$$

Integration of Eq. (49) leads to next equation

$$
\begin{equation*}
\tau_{y z}\left(y_{1}, z\right)-\tau_{y z}\left(y_{2}, z\right)+\frac{\partial}{\partial z} \int_{y_{2}}^{y_{1}} \sigma_{z} \mathrm{~d} y=0 \tag{59}
\end{equation*}
$$

that is

$$
\begin{equation*}
\tau_{y z}\left(y_{1}, z\right)=-\frac{1}{b} \frac{\partial N}{\partial z}=0 \tag{60}
\end{equation*}
$$

By the same method from Eq. (54) we obtain

$$
\begin{equation*}
\sigma_{y}\left(y_{1}, z\right)-\sigma_{y}\left(y_{2}, z\right)+\frac{\partial}{\partial z} \int_{y_{2}}^{y_{1}} \tau_{y z} \mathrm{~d} y=0, \tag{61}
\end{equation*}
$$

that is

$$
\begin{equation*}
\sigma_{y}\left(y_{1}, z\right)=-\frac{1}{b} \frac{\partial V}{\partial z}=0 . \tag{62}
\end{equation*}
$$

Eqs. (60) and (62) show that the stress boundary conditions for $\tau_{y z}$ and σ_{y} at $y=y_{1}$ are satisfied. In the following we prove that

$$
\begin{equation*}
\tau_{y z}\left(y_{12}, z\right)=\frac{Q(z)}{b}=\frac{k s(z)}{b} \tag{63}
\end{equation*}
$$

Starting from Eq. (50) we can write

$$
\begin{align*}
& \tau_{y z}\left(y_{12}, z\right)=-E_{2}\left[\left(y_{12}-y_{2}\right) \frac{c_{2}}{c} \frac{\mathrm{~d}^{2} s}{\mathrm{~d} z^{2}}-\frac{1}{2}\left(y_{12}^{2}-y_{2}^{2}\right) \frac{\mathrm{d}^{3} v}{\mathrm{~d} z^{3}}\right]= \\
&=-E_{2}\left[\frac{c_{2} h_{2}}{c} \frac{\mathrm{~d}^{2} s}{\mathrm{~d} z^{2}}-c_{2} h_{2} \frac{\mathrm{~d}^{3} v}{\mathrm{~d} z^{3}}\right]= \tag{64}\\
&=-\frac{E_{2} A_{2}}{b} \frac{c_{2}}{c}\left[\frac{\mathrm{~d}^{2} s}{\mathrm{~d} z^{2}}-c \frac{\mathrm{~d}^{3} v}{\mathrm{~d} z^{3}}\right]=-\frac{E_{2} A_{2}}{b} \frac{c_{2}}{c} \frac{k}{\langle A E\rangle_{-1}} s(z)= \\
&=\frac{E_{1} A_{1} E_{2} A_{2}}{\langle A E\rangle\langle A E\rangle_{-1}} \frac{Q(z)}{b}=\frac{Q(z)}{b}
\end{align*}
$$

according to Eq. (63). Here, Eqs. $(2,3,4,5)$ and Eqs. (26), (50) have been used to prove the validity of Eq. (64).
NUMERICAL EXAMPLE
The following data are used in the numerical example (Figure 1):

$$
\begin{gathered}
b=0.03 \mathrm{~m}, h_{1}=0.01 \mathrm{~m}, h_{2}=0.03 \mathrm{~m}, E_{1}=1.22 \times 10^{11} \mathrm{~Pa}, \\
E_{2}=8 \times 10^{10} \mathrm{~Pa}, L=1.5 \mathrm{~m}, \alpha_{1}=2.8 \times 10^{-6} 1 / \mathrm{K}, \\
\alpha_{2}=1.43 \times 10^{-5} 1 / \mathrm{K}, T=200 \mathrm{~K}, k=60 \times 10^{6} \mathrm{~Pa} .
\end{gathered}
$$

Figure 4 shows the graph of deflection function and the graph of slip function is illustrated in Figure 5.
The stresses $\sigma_{z}=\sigma_{z}(y, z), \quad \tau_{y z}=\tau_{y z}(y, z)$ and $\sigma_{y}=\sigma_{y}(y, z)$ for some cross section $(z=L / 4$, $z=L / 3, z=L / 2$) are shown in Figures 6, 7 and 8.
$v(z)$ [m]

Figure 4. The graph of $v=v(z)$

Figure 5. The graph of $s=s(z)$

Figure 6. Plots of $\sigma_{z}=\sigma_{z}(y, z)$

Figure 7. Plots of $\tau_{y z}=\tau_{y z}(y, z)$

Figure 8. Plots of $\sigma_{y}=\sigma_{y}(y, z)$

CONCLUSIONS

In this paper the elastic bimetallic beam with flexible shear connection is analyzed. The applied thermal load is caused by a uniform temperature change.
An analytical method, which is based on slipdeflection formulation, is proposed to get the displacements and stresses.
A numerical example illustrates the application of method developed. Numerical solutions derived by this analytical method can be used as benchmark solutions for solutions obtained by other methods.

Acknowledgements

This research was supported by the National Research, Development and Innovation Office - NKFIH, K115701.

REFERENCES

[1] Timoshenko, S. P.: Analysis of bimetal thermostats. Journal of the Optical Society of America, Vol. 11, 233~255, 1925.
[2] Timoshenko, S. P.: Collected Papers. McGraw~ Hill, New York, 1953.
[3] Young, W., Budymas, R.: Roark's Formulas of Stresses and Strains. Seventh Edition, McGraw~ Hill, New York, 2002.
[4] Boley, B. A., Weiner, I. H.: Theory of Thermal Stresses. Dover Publication, New York, 1997.
[5] Hetnarski, R. B., Eslami, M. R.: Thermal Stresses - Advances Theory and Applications. Springer, Berlin, 2010.
[6] Ecsedi, I., Baksa, A.: Static analysis of composite beams with weak shear connection. Applied Mathematical Modelling, Vol. 35, 1739~1750, 2011.
[7] Girhammar, U. A., Gopu V.: Composite beam~ columns with interlayer slip - exact analysis. Journal of Structural Engineering Vol. 119, 1265~1282, 1993.

ACTATechnicaCORTNELSDSS bulletin or tinginieling

ISSN:2067-3809

copyright ©
University POLITEHNICA Timisoara,
Faculty of Engineering Hunedoara, 5, Revolutiei, 331128 , Hunedoara, ROMANIA
http://acta.fih.upt.ro

