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Abstract:  In this paper we employ the method of proper orthogonal decomposition (POD) in conjunction with the radial basis functions 
interpolation (RBF) for characterization of the swirling flow at the inlet of the draft cone of hydraulic turbines by modal decomposition. The 
efficiency of the reduced order model is tested by employing different kernels for RBF interpolation and a rigorous error analysis for the obtained 
reduced order model is performed. 
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INTRODUCTION 
The increased quantity of information in parameter dependent problems 
necessitate simulation algorithms and complex data processing, whose 
efficiency depends on the degree of accuracy and time required to obtain 
useful information. The modeling of self-induced instabilities in 
turbomachinery depending on the discharge coefficient [1], 
investigations on dynamic stall control with passive elements [2] or 
magnetic interactions between the nanoparticles [3] are some pertinent 
examples. 
The problem investigated in this paper originates from turbomachinery, 
where the direct application of model order reduction concepts for fluid 
control is not straightforward, mainly because of the nonlinearity of the 
Navier-Stokes equations. Our focus is to provide a solution to obtain a 
reduced model which accurately represents dominant features of the flow 
at the inlet of the draft cone. 
In this paper we employ a data driven method of Proper Orthogonal 
Decomposition (POD), that use sample stored experimental data to 
generate the spatial modes. The POD method was introduced by several 
scientists independently, for different applications, in particular by 
Kosambi [4], Loeve [5], Karhunen [6] and Obukhov [7] and has been 
illustrated on a variety of examples ranging from fluid mechanics [8], 
turbulent flows [9] and oceanography [10].  
The remainder of this article is organized as follows. The procedure of 
numerical data acquisition is presented in Section 2. The principles 
governing the Proper Orthogonal Decomposition are discussed in detail 
in Section 3 that includes also an algorithm for computing the proper 
orthogonal modes. We devote the Section 4 to reveal the numerical 
results estimated for the hydraulic turbine within the full operating 

range. The results are compared to an existing measurement for radial 
velocity profiles. Summary and conclusions are drawn in the final 
section. 
NUMERICAL DATA ACQUISITION 
Francis turbines cover the largest part of the installed hydropower 
capacity in the world, owing their name to the British-American 
engineer James B. Francis in the 1840s. A cross-section of the device is 
presented in Figure 1. The flow enters through a volute or scroll casing 
which is designated to evenly distribute the flow around the periphery 
of the inlet guide vanes. As the inlet guide vanes increase the angular 
momentum of the fluid, the turbine rotor turns the flow from the radial 
to the axial direction. The draft cone is the machine component where 
the flow exiting the runner is decelerated, where the excess of kinetic 
energy is converted into static pressure. 
In order to derive the mathematical model of the swirling flow in the 
draft cone, we express the physical quantities in their dimensionless 
form using a reference radius refR  chosen as the runner outlet radius 

and a reference velocity ref refV R= Ω , where Ω  represents the runner 

angular velocity. In consequence, by introducing the dimensionless 
velocity ( )/ refv V R= Ω  we are concerned on the axial-tangential 

velocity profile ( ),zv vθ  downstream the runner, corresponding to the 

radial section [ ]{ }0, wS r r r= ∈ , where /w w refr R R= is the 

dimensionless radial distance to the cone wall and has the value 1.063  
in our test bench (see Figure 1). 
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Figure 1. Meridional cross-section of the draft cone 

 
Figure 2. The two main integral parameters that characterize the 

swirling flow in the section S at each operating point 
A turbine operating regime is defined by the pair ( ),q m  where the 
turbine discharge q   and the flux of moment of momentum m   are 
evaluated in dimensionless form as 

( )
0 0

2 , 2
w wr r

z zq v rdr m rv v rdrθ= =∫ ∫ .                 (1) 

The integrals in relations (1) are computed using the Simpson 1/ 3   rule 
and the corresponding values are given in Figure 2. 
First we consider the velocities expressed as a juxtaposition of a basic flow 

( )0 0,zv vθ  and a perturbation part ( ),zv vθ   such that such that all the 

operating regimes exhibit a null discharge coefficient of the axial 
fluctuation and also a null flux of moment of momentum of the 
circumferential fluctuation. According to definitions (1), this is 
mathematically achieved by writing 

0

0

ˆ ˆ, 2 0,
wr

z z z zv v v v rdr= + =∫                              (2) 

 ( )0

0

ˆ ˆ, 2 0
wr

zv v v rv v rdrθ θ θ θ= + =∫ .                       (3) 

Next we compute the velocity components of the base flow such that the 
conditions (2) and (3) hold. It follows from (1) that  

0

0 0

ˆ2 2
w wr r

z zq v rdr v rdr= +∫ ∫                                    (4) 

and considering (2) yields that the axial velocity of the base flow is 

0
2z

w

qv
r

= .                                                    (5) 

Considering that the fluctuation part of the circumferential velocity is 
expressed as product between the radial coordinate and the angular 
velocity 0 0v rθ ω= , it follows from (1) that  

( ) ( )0 2

0 0

ˆ2 2
w wr r

z zm r v rdr rv v rdrθω= +∫ ∫                  (6) 

and considering (3) yields the expression of the circumferential velocity 
of the base flow as  

1

0 0 0 3

0

, 2
wr

zv r m v r drθ ω ω
−


= =  
 
∫ .                 (7) 

In order to derive the mathematical model of the velocity components, 
we consider seven operating regimes covering both the overload, the 
best efficiency point (BEP) and the partial load behavior of Francis 
turbine. Both axial and circumferential velocity profiles are measured in 
the survey section S   downstream the runner, using Laser Dopler 
Velocimetry technique [11]. These measurements are used to develop 
the reduced order model that predicts the inlet velocity components for 
the operating regimes for which the experimental measurement are not 
available. We will further detail the results in the section dedicated to 
numerical experiments. 
POD-RBF ALGORITHM FOR REDUCED ORDER MODELING 
We concentrate in this section to approximate the velocity components of 
the swirling flow fluctuation ( ),zv v vθ=    as a finite sum of form 

( ) ( )
1

ˆ
p

j j
j

v r a rφ
=

≈∑ .                                          (8) 

In Proper Orthogonal Decomposition approach, we seek for an 
orthonormal basis functions, i.e. 

( ) ( )
( )2,i j ijL S

r rφ φ δ= ,                                    (9) 

where ijδ  is the Kronecker delta symbol and the coefficients 

, 1,...,ja j p=  are computed by projecting the velocity field onto the 

POD modes 

( ) ( )
( )2

,j j L S
a v r rφ=  .                                (10) 

This leads to the following POD algorithm for identification of the velocity 
field in the draft tube of hydraulic turbine, based on the singular value 
decomposition (SVD): 
(i) Collect data ( );iv r q , 1,...,i m= , 1,..., N=  at survey section 

S   for N   operating regimes. 
(ii)  Arrange the set of data in an m N×  matrix called the snapshot 

data matrix, 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1 2 1 1 1

2 1 2 2 2 1 2

1 2 1

; ; ... ; ;
; ; ... ; ;

; ; ... ; ;

N N

N N

m m m N m N

v r q v r q v r q v r q
v r q v r q v r q v r q

A

v r q v r q v r q v r q

−

−

−



= 
 

 

    
. 
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(iii) Compute the base flow matrix 0B  in the following form: 
0 0 2 2 2

1 2/ / ... /z w w N wB B q r q r q r ≡ =  

( ) ( ); zfor v r q v r≡ , 
0 0 0 0

1 1 1 2 1 1 1
0 0 0 0

0 0 2 1 2 2 2 1 2

0 0 0 0
1 2 1

...

...

...

N N

m NN N

m m m N m N

r r r r
r r r r

B B

r r r r

θ

ω ω ω ω
ω ω ω ω

ω ω ω ω

−

×−

−



≡ = ∈
 

 


    

 

( ) ( );for v r q v rθ≡ . 

(iv) Compute the base flow-subtracted snapshot matrix  0A A B= −  . 
(v) We employ an economy size singular value decomposition (SVD) of 

A  that guarantees the existence of real numbers 

1 2 ... 0dλ λ λ≥ ≥ ≥ >  and orthogonal matrices m m×Φ∈  and 
N N×Ψ∈  such that  TA D= Φ Ψ  , where 

( )1,...,
d d

dD diag λ λ ×= ∈ . 

(vi) The column space of A  can be represented in terms of the d   linearly 
independent columns of Φ . Since Φ  is orthogonal, we find that the 
columns of the snapshot matrix A  are 

 ( )( ):,
1 1

d d
T

i i i
i i i

v A D φ
= =

= Φ = Ψ =∑ ∑



 

( ) ( ) ( ) ( )
1 1

d

d d
T T T

i i
i i iI i

D Aφ φ
= =


= Φ Φ Ψ = Φ =


 
∑ ∑





 



1 1 1

,v m

T
i

d N d

kki i i i
i k i

v

A

φ

φ φ φ
= = =

=



= Φ =


 
 

∑ ∑ ∑


  



, 

where d d
dI ×∈  stands for the identity matrix and , m⋅ ⋅


 denotes the 

canonical inner product in m .  
One measure of the effectiveness of POD is related to the rate of decay of 
the eigenvalues. We define the relative energy content (REC) of the 
singular value decomposition of  A  by 

( ) 1

1

d

p
jj

POD
jj

REC p
λ

λ
=

=

=
∑
∑

                                   (11) 

Table 1. Kernels for RBF interpolation 
Name of the Kernel Definition 

Cubic ( ) 3k z z=  

Gaussian ( )
2

2exp
2
zk z
σ

 
= − 

 
 

Thinplate ( ) ( )2 ln 1k z r z= +  

Multiquadric ( )
2

21 zk z
σ

= +  

and we find the number of POD basis vectors p d<  when the low-rank 
approximation is required to contain %δ  of the total information 

contained in the original snapshot matrix. The dimension of the subspace 

spanned by the first p   singular modes { } 1

p

j j
φ

=
 is determined by 

 ( ) ( ){ }arg min ; .POD PODp REC p REC p δ= ≥        (12) 

Usually, we consider 99.00% 99.99%δ≤ ≤  and by employing the 
radial basis function (RBF) interpolation, the coefficients 

, 1,...,ja j p=  of the reduced order model can be determined for any 

operating regime q .  
Considering the precomputed POD coefficients as a set of distinct nodes 
{ } 2

1

p N
i i

×

=
⊂x   and a set of function values { } 1

p N
i i

f ×

=
⊂  , the 

problem reduces to find an interpolant 2:s →   such that 
( ) 1,..., ,i is f for i p N= = ×x                            (13) 

where N   is the number of operating regimes for which experimentally 
measured data are available and p   is the number of POD modes 
provided by the energy criterion (11). Note that we use the notation 

( ) { } [ ]1, 1,..., , Nx y p q q= ∈ ×x  for scattered points coordinates and 

i jf a=   , j = 1,...,p  , 1,..., N=  for scattered points values. 

Following Duchon [13], the solution to the problem (12) is a function of 
the form 

( ) ( ) ( )2
1

,
p N

i i
i

s w k
×

=

= − +∑x x x xP                      (14) 

where k   is a real valued function defined on the kernel 
: p N p Nk K × ×∈ × →   , 

2
⋅  is the Euclidian distance between 

the points  x  and ix , the coefficients iw ∈  are constant real 

numbers, while ( )xP  is a global polynomial function of total degree at 
most 1n −  with n   considered small. The points ix  are referred as 

centers of the Radial Basis Functions ( ) ( ), ik z K= x x ,  where the 

variable z  stands for 
2i−x x .  

Table 1 lists the kernels for RBFs  that we use in the following 
experiments, where parameter σ  is the shape parameter of the RBF. 
Changing the shape parameter of an RBF alters the interpolant surface, 
thus can have a significant impact on the accuracy of the approximation. 
Finding the shape parameter that will produce the most accurate 
approximation is a topic of current research. Investigations upon 
accuracy and stability of RBF based interpolation may be found in 
Fornberg and Wright [14]. 
Considering that { }1 2, ,..., np p p  represents a basis for the polynomial 

( )xP  and { }1,..., nc c  are the coefficients that give the polynomial 

( )xP  in terms of this basis, introducing Eq. (14) into (13)  leads to a 
linear system to be solved for the coefficients that specify the RBF. 
The methodology presented herein leads to the following POD-RBF linear 
model for estimation of the perturbation part of the velocity field for the 
entire operating range. 

( ) ( ) ( )
1

ˆ ; , , ,
p

q q
j j j

j

v r q a r a s x yφ
=

= =∑  
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{ } [ ]11,..., , , ,Nx j p y q q q= ∈ = ∈                (15) 
where q

ja  are the interpolated POD coefficients, ( )j rφ  are the POD 

basis functions, p  represents the number of the POD basis functions 
retained for the low order model and q  denotes the value of the 
discharge coefficient. 
VALIDATION OF POD-RBF MODEL AND NUMERICAL RESULTS 
The aim of this section is twofold: first we verify the accuracy of the POD-
RBF low order model developed herein and second, we illustrate the 
computational efficiency of the proposed model by employing different 
kernels for RBF interpolation. 
Considering the set of 7N = experimentally measured profiles 
representing the axial and circumferential velocities at the inlet of the 
draft tube (see Figure 1), experimentally measured for discharge 
coefficients settled in Figure 2, we employ the POD algorithm described in 
Section 3 to obtain a reduced order model of the velocity fields. The 
logarithmic plots of the singular values obtained from POD 
decomposition of the axial velocity perturbation and circumferential 
velocity perturbation are presented in Figure 3a and Figure 4a, 
respectively. 
The relative energy content captured as the number of the POD modes is 
presented in Figure 3b and Figure 4b, respectively, for both velocity 
fields. Most of the energy defined by Equation (11) is contained in the 
first few modes. 

a.  

b.  
Figure 3. a. POD eigenvalues of the axial velocity decomposition; b. 

Relative energy content captured by POD decomposition as the number 
of the POD modes 

a.  

b.  
Figure 4.  a. POD eigenvalues of the circumferential velocity 
decomposition; b. Relative energy content captured by POD 

decomposition as the number of the POD mode 

 
Figure 5.  POD basis functions of the axial velocity decomposition (a) 

and circumferential velocity decomposition (b). 
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Figure 6. The RBF interpolated coefficients for axial perturbation vs. the 

POD computed coefficients 

 

 
Figure 7. The RBF interpolated coefficients for circumferential 

perturbation vs. the POD computed coefficients 
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Specifically, the first five POD modes capture more than 99.92%   of the 
total information contained in the original snapshot matrix, therefore we 
consider 5p =   the number of optimal POD basis functions retained for 
velocity fields estimation. 
The orthonormal POD basis functions computed with the improved POD 
algorithm presented herein are depicted in Figure 5 for modal 
decomposition of the axial-circumferential velocity fields. The next figures 
illustrate the coefficients of the orthogonal decomposition interpolated 
using the method of RBF with the kernels listed in Table 1. Figure 6 
presents the first five coefficients used for axial velocity decomposition 
and in Figure 7 the coefficients of the circumferential velocity are 
depicted, for the entire discharge window. 
In addition to comparing coefficient profiles we compare the correlation 
coefficients of the reduced order model. The correlation coefficients 
defined below are used as additional metrics to evaluate the efficiency of 
the reduced order model  

( ) ( )( )
( ) ( ) ( ) ( )

2

2

2 2

; ;
,

; ; ; ;

H
POD

q
H H

POD POD

v r q v r q
C

v r q v r q v r q v r q

⋅
=

⋅ ⋅
(16) 

where ( );v r q  represents the measured velocity profile at discharge q , 

( );PODv r q  is the estimated velocity profile obtained with the POD-RBF 

model, 
2

⋅ stands for the Euclidean norm, ( )⋅  represents the Hermitian 

inner product and H  denotes the conjugate transpose. 

a.      

b.  
Figure 8. Correlation coefficients for estimation of axial (a) and 

circumferential (b) perturbations of the velocity profiles using the POD-
RBF model (present research). 
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Figure 9. Velocity profiles estimated using the POD-RBF model (present 

research) in comparison with the experimentally measured profiles 
A comparison of the correlation coefficients between the experimentally 
measured profiles and the reduced order models is provided in Figure 8. 
The values of the correlation coefficients are greater than 99% for axial 
and circumferential velocity profiles and confirm the validity of the 
reduced order model. Moreover, for the problem investigated in this 
paper, the most efficient kernels for RBF interpolation are both the cubic 
and the thinplate kernels. 
In the following, we compare how the reduced order model assesses the 
velocity field in parallel with experimentally measured velocity profiles. 
The base flows of the axial and circumferential velocities have been 
computed respectively using the relations (5) and (7), whilst the velocity 
perturbations have been estimated employing the POD-RBF model 
developed in the paper, using the thinplate kernel. The numerical results 
are illustrated in Figure 9. Circles represent the measured velocity profiles 
for discharge coefficient q . 
The perfectly match between the estimated velocity perturbations and 
the experimentally measured profiles confirms the efficiency of the 
reduced order model developed in this research. 
SUMMARY AND CONCLUSIONS 
In this paper we have proposed an algorithm for orthogonal 
decomposition of swirling flows in turbomachines. This framework is 
useful when a set of few experimentally measured velocity profiles are 

available and estimations of velocity profiles at intermediate discharge 
coefficients are needed.  
We have implemented an algorithm based on Proper Orthogonal 
Decomposition in conjunction with Radial Basis Functions interpolation 
to obtain the reduced order model for estimation of the velocity 
perturbations. Key innovation for the model introduced in this paper 
resides in decomposition of the velocity field into a base flow part and a 
perturbation part, such that the resulting perturbation flow preserves a 
null discharge and a null moment of momentum flux, respectively. In 
consequence, the POD algorithm was applied to the perturbation flow 
quantity, for the axial and circumferential velocity filed, respectively. The 
proposed method allows the identification of the leading modes in the 
perturbed flow, modes that capture the most energy in the flow. The 
methodology presented herein offers an insight on the identification of 
the coherent structures in the perturbation flow. Once the leading 
coherent structures are identified, a hydrodynamic stability analysis of 
the perturbation flow can be performed. This is a topic that we will 
address carefully in our future work. 
We have performed a rigorous error analysis of the reduced order model 
by computing the correlation coefficients when different kernels are 
employed for RBF interpolation. The values of the correlation coefficients 
greater than 99% for axial and circumferential velocity profiles, 
respectively, confirm the validity of the reduced order model.  
By comparing the estimated reduced order solution with the 
experimentally measured profiles we emphasized an excellent behavior 
of the reduced order model.  
Thus the methodology presented in this paper can be successfully 
applied not only to hydraulic turbines, but also for problems originating 
from different domains, where dynamics of the investigated 
phenomenon is strongly influenced by the system parameters. 
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