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Abstract:  Fundamental working element of the most robot and manipulator arms is needle-sized tentacle which moves straight-line. One end of the tentacle 
is fixed and the other is free, and the corresponding physical model is a clamped-free beam. Operation of the tentacle is in straight-line direction and axial 
vibration appears. As the material of tentacle is usually with nonlinear properties, the model of the system is also nonlinear. Axial vibration is described with 
a nonlinear partial differential equation. In this paper an analytical method is developed for solving the equation. It is based on separation of the partial 
differential equations into two uncoupled strong nonlinear second order differential equations. Using boundary and initial conditions, parameters of vibration 
are obtained. The procedure suggested in this paper is applied for a beam with cubic nonlinearity. Frequencies of free axial vibration are determined. It is 
proved that they depend not only on the type of boundary conditions, but also on initial conditions. At the end of the paper the numerical solution of the axial 
vibration of the clamped-free beam with cubic nonlinearity is calculated. 
Keywords:  Robot surgery tentacle; Axial vibration; Fraction order nonlinearity; Clamped-free beam 
 
 

INTRODUCTION  
One of the most responsible tasks for the robot arm is in surgery. Usually, 
the working element of the robot arm is a needle-sized tentacle. This type 
of tentacle is used in vascular surgery [1], in mandible reconstruction 
surgery [2], in orthognathic surgery [3],[4], trans nasal [5]. Robot arm 
may assist in renal and liver surgery [6]. Robot arm is used in laparoscopic 
surgery, too [7]. Unfortunately, recent investigation report about 
perioperative complications of robot-assisted laparoscopic surgery which 
use robot arms [8]. It is stated that the problem is with the accuracy of the 
mechanical system. To exceed the problem the control of the robot arm 
was improved. Results of investigation in robot control (see for example, 
[9]-[12]) are incorporated into the system, but did not give the expected 
results in motion accuracy. It gives us an idea to analyze the vibration 
properties of tentacle.  
Tentacle is modeled as a beam which has axial vibrations. Very often the 
tentacle is not made of steel and the stress-strain property of tentacle 
material is not linear. Influence of nonlinearity on vibration of the system 
is already known (see for example [13]-[15]) and these results have to be 
included into consideration. Many papers are published which are dealing 
with the problem of axial vibrations of the beam with small nonlinearity 
[16]-[19]. In this paper the strong nonlinearity will be also investigated. 
The aim of the paper is to obtain frequencies of free axial vibrations of the 
tentacle which is modeled as a clamped-free beam made of material with 
strong nonlinearity. The paper is divided into four sections. After 
Introduction, the model of the physical and mathematical model of the 
tentacle is given. In Section 3, a solving procedure is given. Method is based 
on variable separation which transforms the partial differential equation 
of vibration into two strong nonlinear second order differential equations. 
In Section 4, the model with cubic nonlinearity is considered. Numerical 
calculation is also done. Paper ends with Conclusions 

MODEL OF THE SURGERY TENTACLE 
In Fig.1, a surgery robot with three separate tentacles is shown. Each of 
tentacles is fixed at its one end to the robot arm and the other end is free. 
Motion of tentacles is in a straight line. Tentacle can be modeled as a 
clamped-free beam as one end is free, while the other is fixed (Fig.2). 
Cross-section properties of the beam are smaller than its length. During 
operation axial vibration of the beam appears.  

 
Figure 1. Robot surgery tentacle. 

Axial deflection y of the beam depends on time t and position x. Separating 
an elementary part of the beam, whose length is dx and mass ρAdx, where 
ρ is density of tentacle material, A is cross-section, the inertial force is 
product of elementary mass and acceleration: ρAdx(𝜕𝜕2𝑦𝑦/𝜕𝜕𝑡𝑡2). 
Usually, material of the tentacle is with strong nonlinear properties as its 
stress-strain relation is 

𝜎𝜎 = 𝐸𝐸𝜀𝜀𝛼𝛼 = 𝐸𝐸(𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕)𝛼𝛼 ,   (1)  
where E is the elasticity coefficient, ε is the deformation, and α is the order 
of nonlinearity obtained experimentally. Coefficient α is a positive real 
number which need not be whole but of any fractional type. Elastic force 
is 
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𝐹𝐹 = 𝜎𝜎𝜎𝜎 = 𝐸𝐸𝐸𝐸(𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕)𝛼𝛼.   (2)  
Equating the elementary elastic force dF and the elementary inertial force 
which act on the separated part of the bean (see Fig.2) the equation for 
longitudinal vibrations are obtained 

𝜌𝜌𝜌𝜌 𝜕𝜕2𝑦𝑦
𝜕𝜕𝑡𝑡2

= 𝐸𝐸𝐸𝐸 𝜕𝜕
𝜕𝜕𝜕𝜕
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝛼𝛼

.                   (3) 
The boundary conditions are 

𝑦𝑦(0, 𝑡𝑡) = 0,      𝐹𝐹(𝑙𝑙, 𝑡𝑡) = 𝐸𝐸𝐸𝐸 �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝛼𝛼

(𝑙𝑙, 𝑡𝑡) = 0,   (4) 
and initial conditions are 

𝑦𝑦(𝑥𝑥, 0) = 𝑌𝑌0(𝑥𝑥),     𝜕𝜕𝜕𝜕(𝑥𝑥,0)
𝜕𝜕𝜕𝜕

= 0,     (5) 
where l is the length of the beam.  

 
Figure 2. Model of the clamped-free beam. 

Mathematical model is a second order partial differential equation with 
strong nonlinearity. To give a valid analysis of the beam motion, it is 
necessary to solve equation (3) according to the boundary (4) and initial 
conditions (5).  
 SOLVING PROCEDURE 
Let us introduce a solution in the form 

𝑦𝑦(𝑥𝑥, 𝑡𝑡) = 𝑋𝑋(𝑥𝑥)𝑇𝑇(𝑡𝑡),             (6) 
where X(x) is a deflection function and T(t) is a time function.  Substituting 
(6) into (3) - (5), we have 

𝜌𝜌
𝐸𝐸
𝑋𝑋𝑇̈𝑇 = 𝑇𝑇𝛼𝛼((𝑋𝑋′)𝛼𝛼)′,             (7) 

and  
𝑋𝑋(0) = 0,          𝑋𝑋′(𝑙𝑙) = 0,  (8) 

𝑋𝑋(𝑥𝑥)𝑇𝑇(0) = 𝑌𝑌0(𝑥𝑥),     𝑇̇𝑇(0) = 0,          (9) 
where 𝑇̈𝑇 = 𝑑𝑑2𝑇𝑇/𝑑𝑑𝑡𝑡2 and X’=dX/dx. 
It is obvious that we can separate variables in (7) and we obtain 

𝜌𝜌
𝐸𝐸
𝑇̈𝑇
𝑇𝑇𝛼𝛼

= ((𝑋𝑋′)𝛼𝛼)′

𝑋𝑋
= −𝑘𝑘2 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. (10) 

i.e., 
𝑇̈𝑇 + 𝑐𝑐12𝑇𝑇|𝑇𝑇|𝛼𝛼−1 = 0,𝛼𝛼(𝑋𝑋′)𝛼𝛼−1𝑋𝑋" + 𝑘𝑘2𝑋𝑋 = 0,  (11) 

where k2 is an unknown constant value and 𝑐𝑐12=(E/ρ)k2. Equations (11) 
are two ordinary strong nonlinear uncoupled differential equations.  
Our major task is to determine frequencies of vibration based on the 
constants k and c1.  
Solving of the equaiton with displacement function 
We rewrite the expression (11)2 as 

𝑋𝑋"(𝑋𝑋′)𝛼𝛼−1 = −𝑘𝑘2

𝛼𝛼
𝑋𝑋.            (12) 

For p(X)=dX/dx=X’ and d2X/dx2 =p’p=p(dp/dX), equation (12) 
transforms into a first order equation 

𝛼𝛼 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑝𝑝𝛼𝛼 = −𝑘𝑘2𝑋𝑋,    (13) 

which solution is 

𝑋𝑋′ = �𝛼𝛼+1
𝛼𝛼
�
1/(𝛼𝛼+1)

(𝐾𝐾1 −
𝑘𝑘2

2
𝑋𝑋2)1/(𝛼𝛼+1). (14) 

Finally, 

∫ 𝑑𝑑𝑑𝑑

(1− 𝑘𝑘2
2𝐾𝐾1

𝑋𝑋2)1/(𝛼𝛼+1)
= �𝐾𝐾1

𝛼𝛼+1
𝛼𝛼
�

1
𝛼𝛼+1 (𝐾𝐾2 + 𝑥𝑥), (15) 

where K1 and K2 are arbitrary constants. For k2 X2 /2K1 =z, we have 

∫ 𝑑𝑑𝑑𝑑
√𝑧𝑧(1−𝑧𝑧)1/(𝛼𝛼+1) = 𝑘𝑘√2 �𝛼𝛼+1

𝛼𝛼
�

1
𝛼𝛼+1 (𝐾𝐾1)

1−𝛼𝛼
2(𝛼𝛼+1)(𝐾𝐾2 + 𝑥𝑥).(16) 

If the integration is in the interval (see [19],[20]), we have 

� 𝑧𝑧−
1
2(1 − 𝑧𝑧)−

1
𝛼𝛼+1𝑑𝑑𝑑𝑑

1

0
= 

𝑘𝑘√2(𝐾𝐾1)
1−𝛼𝛼

2(𝛼𝛼+1) �𝛼𝛼+1
𝛼𝛼
�

1
𝛼𝛼+1

∫ 𝑑𝑑𝑑𝑑𝑙𝑙
0 .     (17) 

Introducing into (17) the definition of the complete beta function 
𝐵𝐵(𝑚𝑚,𝑛𝑛) = ∫ (1 − 𝑧𝑧)𝑛𝑛−1𝑧𝑧𝑚𝑚−1𝑑𝑑𝑑𝑑1

0 ,         (18) 
we have 

𝐵𝐵 � 𝛼𝛼
𝛼𝛼+1

, 1
2
� = 𝑘𝑘𝑘𝑘√2(𝐾𝐾1)

1−𝛼𝛼
2(𝛼𝛼+1) �𝛼𝛼+1

𝛼𝛼
�

1
𝛼𝛼+1

. (19) 
The relation (19) gives the relation for the constant  

𝑘𝑘 = 𝑘𝑘(𝐾𝐾1,𝛼𝛼).      (20) 
It depends on the order of nonlinearity and on the constant K1,, too. This 
result is a new one and has to be proved.  
For the linear oscillator, when α=1, relation (19) transforms into  

𝐵𝐵 �1
2

, 1
2
� = 𝜋𝜋 = 2𝑘𝑘𝑘𝑘,             (21) 

i.e.,                                                        𝑘𝑘 = 𝜋𝜋
2𝑙𝑙

.                  (22) 
Due to periodicity of the function, it is k=(2n-1)π/2l. It is already well 
known solution for the linear oscillator, where the value of the constant k 
is independent on initial and boundary conditions. 
Finally, using the relation (19) and the periodic property of the function 
X(x), the constant k is  

𝑘𝑘𝑛𝑛 = 𝐵𝐵 � 𝛼𝛼
𝛼𝛼+1

, 1
2
� (2𝑛𝑛−1)

√2𝑙𝑙
(𝐾𝐾1)

𝛼𝛼−1
2(𝛼𝛼+1) �𝛼𝛼+1

𝛼𝛼
�
−1
𝛼𝛼+1

,    (23) 

where n=1,2,3,… 
Solving of the equation with time function 
Equation (11)1 has a first integral 

𝑇̇𝑇2

2
+ 𝑐𝑐12

𝛼𝛼+1
𝑇𝑇𝛼𝛼+1 = 𝐾𝐾3 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐., (24) 

where K3 is an arbitrary constant. Rewriting (24) we have 

𝑇̇𝑇 = �2𝐾𝐾3 −
2𝑐𝑐12

𝛼𝛼+1
𝑇𝑇𝛼𝛼+1,  (25) 

and after integration we have 

∫ 𝑑𝑑𝑑𝑑

�2𝐾𝐾3−
2𝑐𝑐1
2

𝛼𝛼+1𝑇𝑇
𝛼𝛼+1

= 𝑡𝑡 + 𝐾𝐾4,  (26) 
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where K4 is the unknown constant of integration. Unfortunately, in 
general, we cannot find the closed form solution of (26). It is convenient to 
assume the approximate solution as a trigonometric function. As (24) 
corresponds to a conservative oscillatory system it is known that the 
amplitude and the period of vibration are constant. Using (25) the exact 
value of the period of vibration of (11)1 can be calculated. 
Due to (25), it reads 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 1/�2𝐾𝐾3 −
2𝑐𝑐12

𝛼𝛼+1
𝑇𝑇𝛼𝛼+1,  (27) 

Using the periodic property of the oscillator and integrating (27), it follows 

∫ 𝑑𝑑𝑑𝑑𝑃𝑃
0 = 4∫ 𝑑𝑑𝑑𝑑

�2𝐾𝐾3−
2𝑐𝑐1
2

𝛼𝛼+1𝑇𝑇
𝛼𝛼+1

𝐾𝐾3
0 ,  (28) 

where P is the period of vibration. Introducing the new variable  

𝑧𝑧 = 2𝑐𝑐12

𝛼𝛼+1
𝑇𝑇𝛼𝛼+1,      (29) 

into (28), it is  

𝑃𝑃 = 4
√2

( 𝑐𝑐1−2

(𝛼𝛼+1)𝛼𝛼
)1/(𝛼𝛼+1)𝐾𝐾3

(1−𝛼𝛼)/2(1+𝛼𝛼) ∫ 𝑧𝑧−
𝛼𝛼

𝛼𝛼+1(1 −1
0

𝑧𝑧)−
1
2 𝑑𝑑𝑑𝑑.     (30) 

Applying the definition (18), period of vibration is obtained  
𝑃𝑃 = 4

√2
( 𝜌𝜌
𝐸𝐸𝑘𝑘2(𝛼𝛼+1)𝛼𝛼

)1/(𝛼𝛼+1)𝐾𝐾3
(1−𝛼𝛼)/2(1+𝛼𝛼)𝐵𝐵 � 1

𝛼𝛼+1
, 1
2
�. (31) 

Based on (31) the frequency of vibration in axial direction is 

𝜔𝜔 = 2𝜋𝜋
𝑃𝑃

= 2𝜋𝜋√2

𝐵𝐵� 1
𝛼𝛼+1,12�

�𝐸𝐸
𝜌𝜌
�

1
𝛼𝛼+1 𝑘𝑘

2
𝛼𝛼+1(𝛼𝛼 +

1)
𝛼𝛼

𝛼𝛼+1 𝐾𝐾3
(𝛼𝛼−1)/2(1+𝛼𝛼)    (32) 

Substituting the constant (23) into (32) it is 

𝜔𝜔𝑛𝑛 =
2𝜋𝜋
𝑃𝑃

=
𝜋𝜋√2

2𝐵𝐵 � 1
𝛼𝛼 + 1 , 1

2�
�
𝐸𝐸
𝜌𝜌
�

1
𝛼𝛼+1

(𝛼𝛼

+ 1)
𝛼𝛼

𝛼𝛼+1 𝐾𝐾3
(𝛼𝛼−1)/2(1+𝛼𝛼) 

�𝐵𝐵 � 𝛼𝛼
𝛼𝛼+1

, 1
2
� (𝐾𝐾1)

𝛼𝛼−1
2(𝛼𝛼+1) (2𝑛𝑛−1)

√2𝑙𝑙
� 𝛼𝛼
𝛼𝛼+1

�
1

𝛼𝛼+1�

2
𝛼𝛼+1

,   (33) 

For 𝐵𝐵(𝑚𝑚,𝑛𝑛) = 𝛤𝛤(𝑚𝑚)𝛤𝛤(𝑛𝑛)/𝛤𝛤(𝑚𝑚 + 𝑛𝑛), where Γ is the gamma 
function, and Γ(1/2)=√𝜋𝜋, we have the frequencies of the free axial 
vibration of the beam 

𝜔𝜔𝑛𝑛 =
𝜋𝜋√2𝛤𝛤((3 + 𝛼𝛼)/2(𝛼𝛼 + 1))

2𝛤𝛤(1/(𝛼𝛼 + 1))√𝜋𝜋
�
𝐸𝐸
𝜌𝜌
�

1
𝛼𝛼+1

(𝛼𝛼

+ 1)
𝛼𝛼

𝛼𝛼+1 𝐾𝐾3
(𝛼𝛼−1)/2(1+𝛼𝛼) 

� 𝛤𝛤(𝛼𝛼/(𝛼𝛼+1))
𝛤𝛤((3𝛼𝛼+1)/2(𝛼𝛼+1))√𝜋𝜋(𝐾𝐾1)

𝛼𝛼−1
2(𝛼𝛼+1) (2𝑛𝑛−1)

√2𝑙𝑙
� 𝛼𝛼
𝛼𝛼+1

�
1

𝛼𝛼+1�

2
𝛼𝛼+1

 . (34) 

It is obvious that the frequency of vibration depends on the order of 
nonlinearity, but also on the constants which have to satisfy initial and 
boundary conditions. 
For the linear oscillator, when α=1, the frequency relation (34) is 

𝜔𝜔𝑛𝑛 = (2𝑛𝑛−1)𝜋𝜋
2𝑙𝑙 �𝐸𝐸

𝜌𝜌
≡ 𝑘𝑘𝑛𝑛�

𝐸𝐸
𝜌𝜌

.                      (35) 

This result for the linear oscillator is already known. For the linear 
oscillator the frequency does not depend on the initial conditions. 
Eq. (11)1 has an exact solution in the form of the Ateb function [20]. 
Nevertheless, in this paper the approximate solution in the form of a 
harmonic function is assumed as 

𝑇𝑇𝑛𝑛 = 𝐾𝐾3𝑐𝑐𝑐𝑐𝑐𝑐 (𝜔𝜔𝑛𝑛𝑡𝑡 + 𝐾𝐾4),                (36) 
with amplitude K3, phase angle K4 and frequency ωn.  
Approximate solution 
Using the solutions (15) and (36) with (23) and (35), we obtain the 
approximate solution of (1) as a sum 

𝑦𝑦(𝑥𝑥, 𝑡𝑡) =

∑
�2𝑇𝑇02𝐾𝐾1𝑛𝑛

𝑘𝑘𝑛𝑛(𝐾𝐾1𝑛𝑛) 𝑠𝑠𝑠𝑠𝑠𝑠(𝑘𝑘𝑛𝑛(𝐾𝐾1𝑛𝑛)𝑥𝑥)∞
𝑛𝑛=1 𝑐𝑐𝑐𝑐𝑐𝑐 (𝜔𝜔𝑛𝑛�(𝐾𝐾1𝑛𝑛,𝐾𝐾3𝑛𝑛)𝑡𝑡�(37) 

and its first time derivative is 
𝜕𝜕𝜕𝜕(𝑥𝑥, 𝑡𝑡)
𝜕𝜕𝜕𝜕

= −�𝜔𝜔𝑛𝑛(𝐾𝐾1𝑛𝑛,𝐾𝐾3𝑛𝑛)
�2(𝐾𝐾3𝑛𝑛)2𝐾𝐾1𝑛𝑛
𝑘𝑘𝑛𝑛(𝐾𝐾1𝑛𝑛)

𝑠𝑠𝑠𝑠𝑠𝑠(𝑘𝑘𝑛𝑛(𝐾𝐾1𝑛𝑛)𝑥𝑥)
∞

𝑛𝑛=1

 

𝑠𝑠𝑠𝑠𝑠𝑠 (𝜔𝜔𝑛𝑛(𝐾𝐾1𝑛𝑛,𝐾𝐾3𝑛𝑛))𝑡𝑡).            (38) 
Using the condition of orthogonallity, constants K1n and K3n are obtained.  
BEAM WITH PURE QUADRATIC NONLINEARITY 
Let us assume that the nonlinearity is pure quadratic and the 
mathematical model of the axial vibration of the beam is 

𝜌𝜌𝜌𝜌 𝜕𝜕2𝑦𝑦
𝜕𝜕𝑡𝑡2

= 𝐸𝐸𝐸𝐸 𝜕𝜕
𝜕𝜕𝜕𝜕
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
2

.            (39) 
According to the suggested procedure (39) is rewritten into two ordinary 
differential equations with separated variables. Specifying the 
nonlinearity, the equation (14) is 

𝑋𝑋′ = 1.1447[(𝐾𝐾1 −
𝑘𝑘2

2
𝑋𝑋2)]

1
3.   (40) 

Modifying (40) into the form  

∫ 𝑑𝑑𝑑𝑑

𝐾𝐾1
1/3�1− 𝑘𝑘2

3𝐾𝐾1
𝑋𝑋2

= 1.1447(𝐾𝐾2 + 𝑥𝑥),            (41) 

we have the approximate solution 

𝑋𝑋 = �3𝐾𝐾1
𝑘𝑘

𝑠𝑠𝑠𝑠𝑠𝑠 [√𝑘𝑘 �1.1447𝐾𝐾1
−13(𝐾𝐾2 + 𝑥𝑥�], (42) 

and its derivative 

𝑋𝑋′ = �3𝐾𝐾1
𝑘𝑘

1.1447𝐾𝐾1
−13𝑐𝑐𝑐𝑐𝑐𝑐 [√𝑘𝑘 �(1.1447𝐾𝐾1

−13(𝐾𝐾2
+𝑥𝑥

�].(43) 

Introducing the boundary conditions into (42) and (43), we obtain 

𝐾𝐾2 = 0, 𝑐𝑐𝑐𝑐𝑐𝑐 (1.1447𝐾𝐾1
−13𝑙𝑙√𝑘𝑘) = 0,             (44) 

i.e., n solutions for k are obtained 

 𝑘𝑘𝑛𝑛 = 0.76316((2𝑛𝑛−1)𝜋𝜋
𝑙𝑙

)2𝐾𝐾1
2
3.       (45) 

where n=1,2,… According to (45), n frequencies of vibrations follow 

𝜔𝜔𝑛𝑛 = 1. 2247((2𝑛𝑛−1)𝜋𝜋
2𝑙𝑙

)2/3𝐾𝐾1
1/9𝐾𝐾3

1/6 �𝐸𝐸
𝜌𝜌
�
1/3

  (46) 
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Frequencies depend on constants K1 and K3, which can be calculated 
according to the initial and boundary conditions.  

 
Figure 3. Axial vibration in y-x-t space. 

In Figure 3, axial vibration of the beam in y-x-t space is plotted. The surface 
represents the amplitude-position-time diagram obtained analytically. As 
the model is assumed to be conservative, only one period of vibration is 
plotted. Vibrations repeat in time, and have the same form.  
CONCLUSIONS 
Axial vibration of the tentacle settled on the robot arm which moves 
straight-line is considered. System is assumed to be nonlinear. 
Mathematical model of the motion is given with a strong nonlinear partial 
differential equation. In spite of the nonlinearity the solution of the 
equation is a product of two functions which depend on two independent 
variables: a displacement and a time function. Due to nonlinear properties 
of the system the constant of separation depends on the order of 
nonlinearity and on boundary conditions. Besides, the frequency of 
vibration is also dependent on the order of nonlinearity and coefficient of 
nonlinearity but also on the initial and boundary conditions. It is a quite 
new result in solving the nonlinear partial differential equation. The 
obtained result is proved numerically.  
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