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Abstract: Several methods are known for the calculation of unsteady flow in long tubes having a small-diameter. In case of long pipes having a small-
diameter radial change of status indicators are neglected, we consider only the tube longitudinal changes. Most of the calculation methods are based
on the finite difference method or the method of equal scale interval characteristic. The common feature of these methods is that the condition for their
stability is the fulfilment of the Courant-friedrich-Lewy condition. This paper shows a faster method for calculation unsteady flow in tube. The
governing equations are reduced to three first-order quasi-linear ordinary differential equations. They are solved on the time scale interval analytically.

The quickness of this method is given by the used stability condition.
Keywords:unsteady flow, CFD, stability condition

INTRODUCTION
Several methods are known for the calculation of unsteady flow in
long tubes having a small-diameter. In case of long pjpes having a
small-diameter radlial change of status indicators are neglected, we
consider only the tube longitudinal changes [1]. Most of the
calculation methods are based on the finite difference method or the
method of equal scale interval characteristic. The common feature of
these methods is that the condition for their stability is the fulfilment
of the Courant-Friedrich-Lewy condiition. This means that for a given
spacing step the time step has to fulfil the following equation:
AX
AM<—F—, (1)
max(a+w)
L.e. the time scales must be less than or equal to the spacing scale
divided by the maximum of the sum of the speed of sound and speed
of flow.In this paper we show the correlations for frictionless flow in
horizontal tube.
THE GOVERNING EQUATIONS
The continuity equation:

dp ow
—+p—=0. 2,
at " ox @
The equation of motion:
dw 10p
—+——=0.
dt pox &
Energy equation (Thermodynamics 1.):
dh 1dp 4k
————=—(T-T).
dt pdt Dp(k ) @
Thermodynamic properties of fluid:
p=p(p.T), )
h=h(p,p). (6
Based on (6)

can be written.

Using (7) in the equation (4) it can be written as follows;

oh 1 ﬁ.,.@ d_p:4_k(Tk_T)/
op|, pJdt Op| dt Dp
after rearranging it we get
on _1
l, P)dp dp 4 (1-1)
oh|  dt dt Dp@ ‘
8pp Gpp
Using the
o, P _r 1
a  af
op, op|,
correlation
dp dp  4a’%k
1B B (1),
dt dt oh
Dp—
6pp
can be written

Expressed in equation (2)

dat " ox

and substituting it into equation (17) we get
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1, W _dp_
P x dt (3
Lé.
, 0w Op Op
———W—=b,. 74
P— x ot x (14)
Taking the equation (14) and adding it we get ap -times the
equation (3), i.e.
—azpa—w—@—W@=b3
ox ot o N 75
ow ow 10p ’ ()
—+wW—+——=0 /-ap
ot ox pox
to give the
ow ow op op
ap| —+(w-—a —| —+(w-a =
e < E Y
correlation. This means that along the characteristic (line)
d
X ow-a (17)
dt
the following ordinary differential equation is satisfied.
dw dp
———=b,. 78
Pt Tt D (18)

Similarly, let’s consider now the equation (14) and subtract the ap -
times the equation (3) from it:
_apM ow Op Op _

o o Vo

X X

ow ow 10p - (79
—4+wW—+——=0 /-ap

ot ox pox

and multjplying the correlation obtained by (—1) :

ap[—+(w+a)—w}[ (w+a)—} ~b, (20

This means that along the characteristic (line)

d—X=w+a 27)
dt
the following ordinary differential equation is satisfied:
dw dp
ap—+—=-b,. 22,
p it dt 3 (22)

The equation system consisting of the partial differential equations
(2), (3)and (11) is the following:

8p 8p p6 0
at ax Oox
ow ow 10p
—+wW—+——-=0 23,
ot ox  pox 24
(D) 2B,

ot ox) ot ox

differential equations along the corresponding characteristics:
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2dp _dp o dx
dt dt O dt
dw dp dx
ap—+—=- =w+a
Pt "o 0 d 24
dw dp dx
dt dt dt

MATHEMATICAL BACKGROUND

Let’s consider the following partial differential equation (2], where

u=u(x,t) and where cand k are constants:
My,
ot ax

Lets takec>0, and make the following initial and boundary

conditions known.

Initial condition is the following ifx >0 :

(25)

u(x,0)=f(x), (26)
and boundary condition is atx=0 .
u(0,t)=g(t). 27)
Let’s formulate the total differential of function u:
du :@dt+@d (28)
ot Ox
and when expressed we get the total derivative of u by t:
d_ou deou .
dt ot dtox

Comparing the left-hand side of equation (25) and the right side of
equation (29) we can write

d—u=k (30)
dt
and
dx
it (37)
Solving the ordinary differential equations (30)&(31), the solution is
u=kt +F(x) (32)
and
X=ct+x,, (33)

wherex, Is the location coordinate in the t=0 moment.
Based on initial condiition (26) the value of u in the t =0 moment is:

u(x,0)=F(x; )=f(x, ). (34
So the solution of the initial value problem is
u(x,t):kt+f(x0), (35)
when x, >0 .
Denoted x,, from (33) formula
u(x, t)=kt+f(x—ct), (36)

can be written when x—t =0 .
I, =x—ct <0, then the solution is calculated from the boundary

and we get its solution from solving the (11), (18) and (22) ordinary - condition according to following (Figure 7) [3]:

u(x,t)=k5+g(t—ij.
c c

(37)
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, fxt fxt Introducing the following notation:
L7 ap—p=u,, (47)
) { ’,, W, =6, (48)
e b, =k, (49)
0 e =xct0) L 9,P,WHP=U,, (50)
Figure 1. Characteristics W, +a, =0, (37)
Ifc<0, then at location x =L we specify the boundary condition, i.e. ZPW—p=U,, (52)
u(L,t):g(t). (38) W, —a, =(,. (53)
In this case the solution Is the following: Based on them system of equations (24) can be written as follows:
u(x, t)=kt+f(x, )=kt +f(x—ct), (39) au, e au_, 5
when x, =x—ct<L, and a ox
u(x,t)= kXTL+g(t—XT_L], (40) %‘Hz%:_k/ (33)
when x, =x—c>L. %+c3%=k. (36)
ot OX

Ifthe cis constant, the intersection of characteristics is not possible.
[fthe c= c(x,t) Is a function, then differential equation (31) has only

one solution for the given [O,t] time interval (ie. the characteristics

Thus the system is falling into three partial diifferential equations and
according to above their solutions are the followings:

do not intersect each other [4]), only if the function ¢ = c(x,t) @n
. . o L kt+f,(x, Jhac,t <x<L+ct
fulfil the Lipschitz condiition. The Ljpschitz condition is as follows [5]:
jc(x; )=c(x, ) SL e, =, (47) u,(x,t)= ki+gm(t—ij hax<c,t (57)
where L. >0 . Using that, dx=x, —x,,, and G G
x—L
c(xz,t):c(x1,t)+§dx we get k—+g”(t——jhax>L+c t
Ox G G
oc —kt+f,(x, Jhax>c,t
L( . (42) 2( 0) 2
EX u, (x,t)= X X, . (38)
Expressing ¢ from equation (33) we get B Z+92,o T aX<G
c:%. (43) kt+f,(x, Jhax<L+c,t
Using this the Lipschitz condition reformulates as follows: u(0t)=1, x-L x-L (59)
sing this e|’xl/)i(x/zcon IIOTITXOWU‘] es as follows. 3 K, | =27 haxsLact
S B <tpo—x| @ ’ ; -
t | | | Adding together the equations (50) and (52) and arranging it we get
and rearranging it we get u,+u
ging 1t we g we_—ntl (60)
L > l (4.57 a2p2+a3p3
¢ Subtracting equation (52) from equation (50), arranging it and using

Comparing the equations (42) and (45) it can be written that the relation (60) we get

function ¢ fulfils the Lipschitz condition when p= 2Pt TPl (67)
oc < 4P, +33P;
o < 45 terms of the equation (47) and by using relation (61) we get the

corelation is met. following formula for density:

THE SOLUTION OF THE SYSTEM OF EQUATIONS | [u AP, =D ]z 20,0 +0,)+a,p, (0,0,
3P, +a,, a3 +ap;)

Returning to system of equations (24), let’s consider the equations P= a

(62)

quast-linear and quasi-constant coefficient equations. Quasi-linear - he ypjqueness of the solution is ensured by the fulfilment of the
functions but now their values are constant as at the beginning of (
m

o,
ox |

8(2 oG,

I ox

time interval. Let’s solve the system of equations in the time interval
t=0 and t=At and on the location interval x=0 andx=L .

JAt <1. (63)
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Switching over from differentials to differences can be written that

< £ 64
max(|Ac,|,|Ac, | |Ac|) (69
must be met.
X3 i Xy X i X Xj
M
t
2 / 1 \ 3 X
X, X X X X X X

Figure 2. Symbols of characteristics
BOUNDARY CONDITIONS

If point M s at the inlet of pipe and inflow is here, only the (a

Tome VIII [2015]

CONCLUSIONS

The essence of the method presented here is that the system of
equations which describes the flow is reduced to three first-order
quasi-linear partial differential equations, which are solved on the
At time interval where the coefficients of equations are calculated
from the status indicators that are known at the beginning of the
time interval, The quickness of this method is given by the used
stability condition. Here Lipschitz condiition (64) must be used instead
of Courant-Friedrichs-Lewy condiition (7). This means that the
lculated time scale for the fixed space scale is not related to the
absolute value of the speed of sound and that of the flow speed only
their  rate  of change. In a  particular  case
=3918 m/ s;w,_ =40,3m/ s) of Figure 5 shows the time function

max max

characteristic line from point 3 exists (Figure 3), and according 10 of the pumber of calculation step.

these and based on the equation (59) the relation between speed and

pressure at point M must be able to meet the following,
p:p3+a3p3(W—W3)—kAt. (63)

This means that if the speed and density are given, then the pressure
can be calculated or if the pressure and density are given, the speed

can be aalculated.

xnj=M 1, X, X 2y s

A

%J'W B 131

% X o K X
Figure 3.Boundary conditions
Ifpoint M s at the end of the pjpe and outflow is here, only the
characteristics that depart from points 1 and 2 exist. If here the speed
Is given, then according to (58) the pressure- and according to (57)

the density can be calculated, namely as follows;
p=p,+a,p,(w,—w)—KAt, (66)
1
p=py+—(p—p,)+kAt. (67)

1
It is taken as a special case when inflow is not at the inlet of pipe. It
means that w,,; =0 (Figure 4. ).

x =M X X X X X x =M

0j '] i nlj L8] i
t

1 3 P 1 X

xﬁj-l b i £y i1 ’_,4 xn-u-w xn-u-w xnj-l
Figure 4. Boundary conditions without inflow
In this case the characteristic that depart from point 1 also exists at

the inlet of pipe. Thus, the properties of point M that is at inlet of pijpe

can be computed as follows:

w=0, (68)
p=p;—a;p;W; —kAL, (69)
kAt+(p—
_p 4 JAt o) )

1 2
a4

—Time with this method ~====Time using CFL condition

140
100 —
2 80
E 60 S/
= 40 /

20 I

0 T T T T T T
0 2000 4000 6000 8000 10000 12000

Number of calculation step

Figure 5. Comparison of methods
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