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ABSTRACT: Today, optimization is one of the main tasks in design work to develop functional and economical satisfying
products. The paper demonstrates an overview of mathematical based optimization methods and views their applications

in the field of design work.
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INTRODUCTION

The substantial task of the engineers is to solve
technical problems considering several material types,
technological, economical, legal, conditions combining
with ecological and human-related restrictions. The
solutions have to fulfill all the given and formulated
requirements, otherwise it has to reach an optimum
value when the designer applying the methodology of
the structural design [1].

The necessary resources during the lifetime of the
product, like the material and energy consumption,
and also the product development related costs and
time are important factors we have to reduce, and
have to find the optimal solution while keeping the
demanded quality level of the product. Changing the
variables of such an optimizing problem the model will
result a reduction of the mass or the manufacturing
cost or the shape or the material properties of the
product and in the end of the process we can reach
the minimum value of the optimization task.

The mathematical description of an optimization
problem requires us to apply an appropriate model
which has limited number of parameters (design
variables). These variables have to be relevant to
describe the most important characteristics of the
design problem.

MATHEMATICAL DESCRIPTION

Any kind of optimization problem can be formulated
to find the appropriate set of the design variables in
the multidimensional parameter space, which can
optimize the main objective function. Generally the
minimum (or maximum) of the ojective function f(x)
in an n-dimensional, Euclidean space R" is to be
searched. The result of the optimization can be
illustrated thus by one point or a vector in this
solution space. In the mathematical notation the
optimization problem can generally be represented,
as:

min f(x), x eR";

0=gi(x), j=1,2,...,m;

o=h(x), j=m+1,...,p;
where X=/[Xy,Xaye.e;Xn, f the vector of the unknown
quantities, gi(x) and hy(x) the restriction constraints,
which can be represented mathematically as
equations and/or inequations, m and p are integer
numbers.
Frequently the objective function in the optimizing
problem is the pure mass of the product, or it is a cost
(material and production cost), some special cases it is
the stiffness of the part [2], or the number of tool
changes in the production process [3].
The optimization variables can be geometrical
dimensions of the construction [4], when the
geometry and the material of the part is fixed [5]. The
restrictions depend on the different tasks and can be
e.g. frames (building) space, firmness, deformation,
stabilities and different kind of manufacturing
restrictions.
The majority of the optimizing procedures usually
supply local optimum solution, but it is possible, that
these local optimum points are also global ones.
In the case of a local optimum is reached, the solution
point will be a better starting point (start vector) for
further calculation in order to reach the global
optimum solution.
In the case when we are interesting to find the global
optimum solution, than it is a possible strategy to use
different starting vectors, and to perform the
optimization process several times. However we have
to remark, that a global optimum solution will exist
only in a convex space of the design variables.
THE ROLE OF THE RESTRICTIONS
The optimum solution can be found quite easily (by
differentiating the objective function) when the
optimization problem has no restrictions.
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Other cases, when the variable space is limited by
different restrictions, it is more difficult to find the
location of the optimum solution. The linear
optimization problem with restrictions seems an
important special case of the optimization tasks. This
case both the main function and all the restrictions are
linear functions of the design variables [6].

The restrictions formulated with equations are
handled more simply, than the restrictions expressed
by inequations. In the majority of the optimization
tasks the possible range of the design variables is
limited by one or more restriction functions. For the
solution of optimization problems with restriction
equations the Lagrangian multiplicator method was
used [7]. Also a lot of algorithms were prepared for
the optimization problems with inequation
restrictions.

The major cases of technical problems the objective
function as well as the restriction functions are
nonlinear functions of the design variables, so the
optimization problem can be handled by the methods
of nonlinear optimization. One of the most well-
known nonlinear optimization methods is the
sequential unconstrained minimization technique [8].

The essence of this method is transferring the
problem with restrictions into a problem without
restrictions. A designer often meets optimization
tasks with several objective functions during the
product optimization process. The optimization task
with several target functions represents an
aggravation of the optimization problem. Because of
the various application possibilities an intensive
development can be observed last years.

In the case of a large number of optimization
problems the variables may take only discrete values.
This kind of problems is called discrete optimization
problems. This discrete optimization procedure will
calculate the optimal value of a main function when
the design variables can be selected from a discrete,
so called material variable range [9].

Recent years the evolutionary algorithms are used
frequently as optimization procedures in the case of
component and product optimization (mechanical
components) [10].

Evolutionary algorithms are stochastic search
methods, which are based on the principles of the
biological evolution. Three optimization directions of
the evolutionary algorithms were developed
independently from each other: the evolutionary
programming, the evolution strategies and the
genetic algorithms.  All these methods use the
variation and selection operations as the basic
elements of the evolution process, but they differ in
the development of these elements [11]. The usage of
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these algorithms will increase in the coming years due
to the various application possibilities. The calculation
of the actual restriction values (e.g. shifts, tensions,
etc.) can be computed in many applications only by
numeric methods.

For example in [12] there are some optimization
samples of a wrench, flange, etc. on the basis of a
FEM-Models. The optimization with the help of the
finite element method is a widely used technique [13].
TECHNICAL OPTIMIZATION PROBLEMS

A lot of optimization problem will combine technical
and economical requirements against the product or
the component, so functional and economical
requirements must be equally considered. When
specifying the technical and economical approach,
product and process optimization is defined. The
product optimization can be specified further:

O product optimization,

topology optimization,

form optimization,

dimension optimization,

material optimization and

process optimization.

During the topology optimization the arrangement of
geometrical elements of a product can be determined
(dimensions and position) with the optimizing
procedure. The topology optimization is an everyday
task of technical designers. He has to design a
component (as a part of a product) so that available
space mustn’t exceed, it has to keep the outside loads,
and the minimum material expenditure can be
achieved at the same time [14]. For the topology
optimization task a typical sample is the optimizations
of a trust units (Figure 1). 1

Oooooad

5

Figure 1. Topology optimization
in the case of optimization a trust unit
During the beam unit optimization the topology
optimization is an effective design tool, because it is
possible to develop light and at the same time rigid
beam units [15]. The consumption of time necessary
for the development can be clearly reduced [16]. As
an initial geometry, the results of the topology
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optimization can be usually used for the dimension
and form optimization process. A goal of the form
optimization is to determine the optimal geometry of
a component - under given boundary conditions -
regarding defined quality criteria (Figure 2).
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Figure 2. Form optimization of a beam

Objective function and restrictions are selected
according the nature of the tasks [17]. Restrictions
such as displacement and tensions generally cannot be
computed analytically, but it is possible generate them
numerically e.g. with the method of the finite
elements. For the solution of form optimization
problems also variation principles can be used in
special cases.

In the case of dimension optimization often the
dimensions of cross sections are computed [18]. In
the cross-sectional optimization problems mainly
displacements, tensions or natural frequencies are
determined (Figure 3). An example of this class of
optimization problems is the calculation of optimal
dimensions of mechanical components or the
optimization of the isolation thickness of pipelines.
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Figure 3. Dimensional optimization sample
of a rectangular section

During the material optimization have to find the
optimal structure of the materials [19] e.g. how to
arrange the structure of composite layers (Figure 4) or
how to arrange the fiber strips in fiber-reinforced
materials.

The material optimization basically is a topology
optimization, however in the variable space is a
microscopic solution area.
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Figure 4. Material optimization sample
of a composite structure
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The process optimization was developed in
technology and economics in the last decades very
rapidly, and the theory was based on the discipline
,,Operation‘s Research”. The technical processes in
the production were completed with the disassembly
or the recycling, the technological processes with the
equipment technology (Figure 5) or economic
processes in the economic science models.
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Figure 5. Process optimization
in the heat transfer technology
We can find several samples for optimization for trust
structures in the literature. Most of the cases two
major problem type exists:
O the topology of the structure is fixed, so the cross
sections of the beams are the unknown quantities,
O the overall topology of the structure is variable, so
we have to find also the optimal overall geometry.
The calculation of a fixed topology trust structure is
presented. (Figure 6) The method of solution is based
on [20].
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Figure 6. Topology of a trust structure
Unknown quantities: the size of the square shaped cross
section beams (11 datas in this case).

Objective function: the total mass of the trust
structure and the displacements of the C and D points
will be selected as main functions (multiobjective
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optimization). The displacements of the nodes were
calculated with weight factors.

Restrictions: the maximum limits of the nodes C and D
will be set. Wemax < Waiiow; Womax < Wailow - The stresses
of the independent rods of s trust structure is tension
or compression. The maximum tension stresses in all
of the 11 rods must not exceed the allowable value.
Oimax < Ouiow- In the case of the compressed rods
another possible failure, the buckling exists, so the
forces (N;) in the individual rods must be smaller than
the limit value (Niprq) calculated under the EUROCODE
3 standard, so, N; <Nj, pg-

Table 1. The results of the optimization of a trust beam

Optimal . .
g | oo | o | PR | et
factors | soet | M€ imm) [mm]
A= 98;
A, =180;
_ A;=83;
w, = 3= 03
0,995 AA‘*S :’2"1‘;}'
O:/(\gzozs AAE-: 34;' 59,3 4,56 3,24
we | A%
8= )
0,0025 A, = 915,
Ao =851,
Ay =772
A, =1110;
A,=2083;
A;=968;
Wy = Ay =2509;
0,0025 AS =2553;
W, = As=354; | 231,3 0,66 0,44
0,5975 | A;=374
W3 = 0,4 Ag =2141;
A, = 2169;
Ao = 2249;
A, =1943.
A, =1254;
A, =2090;
A; = 813;
Wi s A, = 280%;
4 ’
Oi,(v)ofs A =2775;
0,995 | As=774 | 240,0 0,60 0,54
, A;=77%;
o0oss | As=1832
»0025 A, =1866;
Ao = 2506
A, =1622.

The multiobjective optimization task was solved by a
so called weight method, where the different
objective functions were multiplied by such weight
coefficients where the sum of the weight factor is 1.
The nonlinear optimization problem was solved for
the case of: a=1,5 m, F, = 45 kN, and F,=27 kN. The
results are collected in the Table 1, based on [21]. It is
clear, how the optimum is moving when the weight
factors were changed. While the w, factor
approaching 1, the role of the mass-related objective is
increasing. This case the optimizing process will be a
simple mass-minimum optimizing task. The result will
be a minimum mass truss structure with relatively big
node displacement values. If we will increase the
weight factors of the C and D node’s displacement, the
importance of decreasing these displacements will
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bigger and of course the optimization process will
result a bigger mass, more rigid structure (the second
row of the table). If we are intending to reduce the
displacement one of the nodes, the corresponding
weight factor has to be increased. It can be observed
in the third row of the table, that increasing the w,
weight factor, the displacement of node C will reduce,
and the total mass as well as the displacement of node
D will increase.

OPTIMIZATION OF THE INSULATION LAYER’S THICKNESS OF A
PIPELINE

Calculation of the optimal thickness of an insulation
layer has a quite high importance because of the
valuable material cost in the investment phase as well
as the heat loss cost in the operation phase of a heat
pipe system. General case widely used the one-layer
insulation, but special cases when high temperature
fluid is transported, it is more beneficial to use two-
layer insulation system. The insulating materials
resisting against the high temperature are relatively
expensive ones, but others for lower temperature are
cheaper.

The inner insulating material was cork layer; the outer
material was polyurethane foam. The PUR material
can be applicable up to 130 €. We cannot find so
many papers optimizing the two layer insulating
systems in the literature, because of the problem can
be handled only with the nonlinear methods. The
main goal of this optimization task to find the
minimum of an objective function contain the cost of
the heat loss and the insulation investment cost.
When calculating the insulation task, we have to know
the temperature distribution. Frequently only
numerical methods are suitable to calculate this
temperature field.

It is presented an optimum calculation for a two-
layer’s insulation system. (Figure 7) The task is to
determine the optimal thicknesses (h, h,) of the
insulation layer’s, while the target cost function -
consisting the material costs and the heat loss costs -
must be minimum [22].

Figure 7. Cross section of two layer insulated heat pipe
Unknown quantities: the thicknesses of the inside and
outside insulation layers (h,, h,).
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Objective function: contains the material costs of the

pipe, the material costs of the two insulating layers,
and the cost of heat loss.

Restrictions: it is necessary to limit the allowable heat
loss from different point of view.

(9 <Quaiow)- The contact temperature between the two
insulation layers (t;) have to be restricted, because of
the relatively low heat resistance of the PUR material
(tallow:130 <

t; <taw. The t; temperature can be calculated from
the fact, that the same heat quantity is transferred for
all the layers. Also it is necessary to restrict the
temperature of the outside surface (t,), it has to be
bigger, than the outside ambient temperature (t,). So
t, <t

The presented sample task calculates a pipe
transporting 5 bar pressure steam. The calculation
was performed on a 10 m long straight session of the
pipe system. The allowable heat loss was Qajow = 75
W/m. (Figure 8) The results for the optimum
thicknesses (hiopt, haopt) is presented as a function of
the temperature of the steam flow. We can see, that
the optimal thickness of the inner insulating layer is
independent from the steam (t;) and outside (t.,)
temperature, we have only one optimum value h,qp
for that. The reason of this behavior that the other
restriction, for the temperature between the two
insulating layer is the active restriction. As for the
optimal thickness of the outer insulating layer (h,opt)
will changing with the different inner/outer
temperatures.

This calculation resulting, that it is possible to
determine the optimal sizes of the insulation with the
correctly formulated objective function and the
appropriate restriction conditions [22]. This way the
reduction of the material and heat loss costs is
possible. This model is also suitable for the calculation
of the one layer insulation task, and also for the
calculation of a spherical tank with the appropriate
modification of the equations [23].
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Figure 8. The optimum thickness
for the insulating layers vs. the steam temperature

Mathematical optimization methods are generally
applicable in the case of technical and economic
problems. The optimization problem in general case is
to build up a suitable model: to set up the target
function(s) and to formulate the restrictions ds
mathematical functions or conditions. With the
adequate formulation of the optimization problem
the functional and economic characteristics of the
products and/or the components as well as the
processes can be improved fast and effectively.
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