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B ABSTRACT:

This paper presents results of optimal design of seismically loaded thin shelled liquid containing cylindrical vessels.
Three support structures are bearing plate anchored to foundations, columns and cylindrical skirt. The goal is
maximisation of customer satisfaction on the structure. The goal is defined as product of fuzzy satisfaction functions
for decision variables like cost and limit states like buckling and overload. Discrete design variables are used. The FE

method and standards are used to verify the optimum design. The results agree satistactorily.

B  KEYWORDS:

Seismic engineering applications, Steel structures, FEM calculations, Fluid structure interaction, Fuzzy design

INTRODUCTION

Background for this study is global need to utilise
safely liquid containing vessels under seismic loading.
A preliminary optimal design of the interconnected
vessel equipments concepts is needed before detailed
design.

Seismic loading excitation excites interaction between
the ground, supports, shells and the inner fluid and
also the neighbouring connected industrial large
structures. In optimal design these have to be
considered simultaneously with all interactions. First
the earthquake causes overturning moments and base
shear which cause bending and direct shear stresses at
the vessel shells. Next seismic actions cause sloshing
and tilting of the liquid level which increase the
hydrostatic pressure and thus the hoop stresses.
Standards present many approaches which need to be
utilised to get finalised acceptable designs. One is
Nch 2369 Of.2003-API 650 2008 /1/ for mechanically
anchored Liquid tanks. Rules for buckling resistant
designs are considered in 27 by ECCS Technical
Committee 8. Structural stability and buckling of
steel shells European Recommendations, 1988, NO 56.
Theory and analysis of plates is considered by Szilard
/3. Steel structure design is considered in /4]
Stahlbau handbuch and by Case et.al /5/. The theory
of pressure vessels is considered by Harvey /6].
Malhotra, Wenk, and Wieland, /7] have proposed a
simplified procedure for seismic analysis of liquid
storage tanks. Malhotra /8] has studied seismic
strengthening of liquid storage tanks with energy
dissipating anchors.

Basic general fluid mechanics theory is discussed by
White /. Martikka and Péllanen have applied multi-
objective optimization using customer satisfaction
goal formulation with fuzzy models in /10/and in /11].
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The purpose of this study is to present results of
application of this methodology of fuzzy optimisation
with FEM verification to designing of seismically
loaded liquid storage vessel.

DESCRIPTION OF THE VESSEL MODELS.

Common support models

Liquid storage vessels are generally cylindrical.
Common supports options are ground support with no
skirt, elevated support with shell skirt and elevated
support with columns. These are shown in Fig.1

..-J;.;..-..-..-. .!.!.g-.g-.;;..-.l..—.‘].;.; ......

b) c) d)
Figure 1. Support options. a) Ground support with no
skirt. b) Elevated support with shell skirt. ¢) Support
with columns. d) Cable stiffening

Basic dynamic behaviour of skirt and column
supported models

Main features are described in the sketch of Fig.
2. The ground support model is considered later.
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Flgure 2 SheII skirt modelling. a) Sketch. b) A 2D two
spring one lumped mass dynamical model.
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A two spring one mass and stiff frame model, Fig.2
and Lagrange’s dynamics are used to get an
approximate lowest eigenfrequency. Vessel mass can
be lumped to its centre of gravity. The Lagrange’s
function L is difference of the kinetic energy T of the
mass and the potential energy V.

L=T-V

T =%mv2 =>V=HO=T =%mH292 1)

V ~mgH 4 6” +kR?¢?
The equation of motion for the one dof angular
displacement is obtained with

d|oL| oL
dt[aa} 00 "’ @
The simplified equation of motion is
2
é+(%+%(§} Je: 3 @A)

The solution is sum of homogeneous and particular
solutions. Lowest eigenfrequency and eigenperiod T
for a bearing plate anchored to ground having two
springs 2k one mass m model is obtained as

1
2\2
o| 9 2K(RY P g 27
H m{H 10}
HORIZONTAL ELASTIC SEISMIC RESPONSE SPECTRUM

For the horizontal components of the seismic action,
the elastic response spectrum Se (T) means spectral
acceleration S,. It is defined by standards EN 1998-
1:20004(E) and EN 1009-1:2004(E) /2] by the following
four discrete expressions

4)

Curve 1
0<T<T,, S.(T)=3q, -5{1+Tl(77-2.5—1)} (5)
B
Curve 2
Ty <T<T.S.(T)=a,-S-77-25 (6)
Curve 3
T, <T<T,, se(T):ag~s-q-2.5{TT—°} @
Curve 4
T,<T<4s, S,(T)=a,S 25{TCTD} (8)
D s s , e = g . .77. . T2
Spectral
acceleration 2.5Sn =BSn
per aq )
5.(1.¢) action S=S;

aq

ction S=S,
f

(:_) oa = |

Ts Tc 1o T period

Figure 3. Spectral horizontal acceleration per ground
acceleration vs.period of eigenvibration of the

structure
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Table 1. Some typical earthquake data values, , damping
correction factor, with reference value of 1 for 5% viscous
damping.

Seismic action j=1
1
2.5
1

|
|
|
|
2 |
|
|
|
|
|

Seismic action j= 2

Here T= vibration period of a linear single -degree-of
freedom system, a, is design ground acceleration: Now
the chosen ground type is type A (hard rock v, >
800m/s). The soil factor S depends on the hardness of
the ground.

For hard grounds (A) S =1 and for soft ground (E) S =
1.4, n is the damping correction factor with a
reference value of 7 =1 for 5% viscous damping

& is the viscous damping ratio of the structure
expressed in percentages

3 10
"5+ )
Typical values are
ifé~0=n= £=1.4,.if§z5%:>77=1
5+0

SEIsMIc LoAD ON A LiouiIp FiLLED TANK

Seismic loads and responses of liquid filled vessel are
complex tasks to analyse. Thus a simple to use and
also a reasonable accurate model is needed. The
common method is to separate the fluid into
functionally different fictive parts, convective mass on
top of impulsive mass as shown in Fig.4.

(9)

sloshilny
My, : :
waves H
:@ 'y
m; ; \\ me
mass of\~\ : he sloshing mass

i”:P“'?:jVE N @ or .

iqui i mass 0

h; : R convective
i \ 4 liquid

Figure 4. Seismic masses
Mass model curves are shown in Fig. 5 based on data
by Malhotra et al/7].

1
Mecm Si‘2=0.8
Mem 5i1=0.59 M = A’;W
i 5¢1=0.41
qii=1 | gc1=1
0 " Sl ot 502=0.15
(0] 1 g =HIR 3

Figure 5. Mass vs. aspect ratio g curves
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Model can be fitted to the experimental curves

ei mi
Miy =S -q~ =
w 10
ec m, H ( )
Mey =S4 -Q :M 1q:E

w

Base shear V is sum of impulsive and convective
components. The simplified structure has two masses
and two eigenperiods, T, for convective vibration and
T; for impulsive vibration

\ :Vi(Ti’gi)—’_Vc(Tc'é:c) (11)

V =(m, +m’)- (i, + )+ m, - (i, +7)
here m’ is equipment mass, # is mass centre
acceleration and Z is earthquake acceleration. This
may be written as

V=(mj +m)-Se(T;, &)+ m - Se(Ty, &) (12)
The overturning moment above the base plate at x=0
M:Z[Sa(Ti’é:i).mihi]:Mb (13)
First this is expanded and next in calculations the
equipment masses are neglected for simplicity.
M = (mihi + My N + Mrgof Moot )Se (Ti S )+

+ mcthe (TC '§C) (14)

M) = u

Figure 6. Base shear and overturning moment load on
a vessel by seismic action

OPTIMUM DESIGN. MATERIAL DESIGN VARIABLE OPTIONS

The final success of engineering tasks is determined by
the magnitude of customer’s satisfaction on the
delivered result. First condition of a success is optimal
definition of goals and constraints. Second condition is
choice of method. At the concept stage the essential
design variables are few, discrete and their
relationships are highly non-linear. Thus a fast enough
search method is exhaustive learning search of
optimum. Third condition is that all reasonable
concepts are analysed and ranked in order of total
satisfaction.

Options are shown in Table 2.0ne may also choose to
use ecological merit and corrosion resistance as

decision variables etc.
Table 2. Material design variables.Stress (MPa), cost
(kg/m?), Elastic modulus (MPa),material cost (eur/kg).
M$(L) ="Al " |

material code

M$(2) =" St "
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UNIFIED FUZZY GOAL AND CONSTRAINT FORMULATION

Now all goals and constraints are formulated
consistently by one flexible fuzzy function, as in /10/,
/117 This is illustrated in Figs.7 and 8 and Table 3.
These functions depend on decision variables chose as
most important for the customer, like safety factors,
reliability cost etc. The customers and designers can
together define the most satisfactory ranges and also

left or right bias.
I Hl H2 ‘

NONAL &e

1 s
reoy |20 |
0
X1 Xo = 1-X1
0 Smin N Smax 1
Figure 7. Definition of a typical fuzzy satisfaction
function

In the design algorithm the satisfaction function is
defined for each decision variable s by inputting the
left and right limits and two bias parameters p. The
left skewed option a is useful to get low cost designs.
Flattening the shape increases indifference of choices
of s. The call CALL pzz(Smin, Smax> P1, P2, S, P(S)) gives
as output the satisfaction function P(s) which varies
in the range 0...1. The decision variables s are
changed to an internal dimensionless variable x;

— =X, =1-X,
Smax ~ Smin
The satisfaction function depends on one variable x;

PL P2
+ 1-
P(Xl):(pl+p2)p1 pz(%} ( leJ H, (16)
L >

(15)

X, =

Here

Hy, = H,(s)1-H,(s)) (17)
Two step functions are used to define the inner
desired range of the decision variable

Hl(s) :%[1+Sgr(s_smin)]'H2(S) :§[1+Sgr(s _Smax)] (18)
Outside of the desired range a small non-zero seed
value is added to the satisfaction function to promote

search drive for improvement.
p1=

Ximax p2=

a 0.1 5

b 01 ‘ |j o1

c 1 1 R
Y\ ]

e 5 0.1

Or—sk,min :Fj’ km 1;
< T )

Figure 8. Satisfaction function examples
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3: Skewness parameter values.
a o] © d e

The total design event G is junction of sub design
events which are functions of decision variables

G(s)=G(s,)and G (s, )..and G (s, ) (19)
The design goal is to maximise the product
P(G(s))= P(s)=P(s,)P(s,) ... -P(s,) (20)

Here s is decision variable and P(sy) is satisfaction on
it. The desired range for s, is R(Sk) = Skmin < Sk < Skmax

ALGORITHM FOR OPTIMISATION

In engineering optimisation at concept stage most
tasks are highly non-linear and also the design
variables are few and discrete. For this reason, the
exhaustive or learning enhanced search methods are
deemed to be satisfactory. User can preselect the
material from the list of available selections or leave
it as one more design variable to the search algorithm
to determine. Total satisfaction is first initialised to a
low value

Pgbest = -0000001,

FORir=1 TO N' Radius R(ir)

FORitt= 1toN ' t(itt) wall thickness

FORiH = 1to N, H(iH) height of vessel

FOR itbot 1to N, ty.(itbot) wall thickness at bottom of
the shell

Design variables for columns are
feasible ranges

FOR irp = 1 to Nirp , r,= ry(irp) is column radius

FOR itp = 1 to Nitp, t = ty(itp) is column wall thickness
FORilp=1toNlp, I, = Ip(llp) is height of column

Each k = 1,2..13 deC|S|0n variable s is calculated.
The its range and bias pair p; and p, are given as
inputs to get the satisfaction function P(s) by a call
CALL pzz(smin, Smaxs plv p21 S, P(S))'

The total satisfaction is product
satisfactions.

Ps; =1, the initialisation first, before the loop
FORi=1TON

preselected within

of partial

Ps = Ps * Ps(i)
NEXT i
Py = Ps

IF Pg > Pgpest THEN

'new optimum is better than previous
ELSE search is continued. END IF
NEXT indices

DECISION VARIABLES

An illustration of the use of decision variables is
shown in Table 4.

Table 4. Typical definitions of the decision variable
desired range limit Spin, Smax and biases p; and p,

Sk s;= N
decision Factor
of safety

S3=V
Useful volume

ss=M
Cost of material

variable

N

Smin.

JaN

Smax Smins  Smax
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One design goal is to shift the impulsive and the
convection mass eigen periods away from the large
seismic acceleration period range. For seismic action
S(1) the choice the main parameters are

Tg=.12, Tc =.35,Tp = 2.4, ag-27

Now ground acceleration is chosen conservatively
rather high, a4 =3.

The damping coefficients z are z = z; = 0.02 for
impulsive and z = z. = 0.05 for convective motion.
Decision variable s;= Tim, Or impulsive mass period

$,=Timp:  Ps(1)=P(s,) (21)
The aim is to constrain this into the safe range
Range:s,;, =0.06, s, =0.48,
. (22)
Biases: p, =0.1,p, =0.1
According to Malhotra /2]
L
‘f 23)
C, =7 +1 —=03.....3
R
The eigenvalues are
W, = 2—”, k, = o’m; c, = 2&om (24)

imp
Then spectral acceleration corresponding to this
T=Timp is calculated by CALL Se(T, z, SeT) giving as
output SeTi(iv) = SeT
Decision variable s;o= SeTi or spectral acceleration
at impulsive mass eigenperiod Timp

S, = SeTi, P,(10)=P(s,) (25)
Small value is desired and range is biased to the left
Rf';mge “Smin =1, Spmax =20, (26)
Biases: p, =0.1,p, =2
Decision variable s, = T, Or convective mass
eigenperiod
Small value is desired
S2 = Tconv' Ps (2): P(SZ) (27)
Range:s;, =0.35 s ., =7,
. (28)
Biases: p, =2,p, =0.1
Malhotra /2] gives the simple model
Tconv = CC'\/E
H (29)
C.,=15—=03..3
R
Eigenvalues are
272' 2
a)C = ’kC Za)C mC’CC =2§chm0 (30)
Tconv
The spectral acceleration corresponding to T= Ty IS

calculated by CALL Se(T, z, SeT) giving as output
SeTc() = SeT

Decision variable s;;= SeTc or spectral acceleration
at convective mass eigenperiod Ty

s, =SeTc, P,(11)=P(s,) (31)
Range and bias are
Range:s., =1, S, =10,
(32)

Biases: p, =0.1,p, =4
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Decision variable s;= V or useful volume
Large volume is now desired
s, =V =2R(irPH(ih).P.(3)=P(s,) (33)
Range and bias are
Range:s,;, =1000, s
Biases: p, =5,p, =0.1
Decision variable s, = Mat(im) or mass of shell

material of class im
Small mass of material class im is desired

s, = Mat(im)= p(imV,, = p(imRaRt(R+H)

., =6000,

m

(34)

(35)
Ps (4): P(S4)
M, =1-10°
Range:s,, =0.1M .., Smux =1M . (36)

Biases: p, =0.1,p, =2
Decision variable s; = Cost or cost of materials and
construction
Low cost is now desired

Cost =c,, (im)- Mat(im)

s;=Cost=K ,P,(5)=P(s,) 37)
im =2, steel

K o =1-10°

Range:s,, =0.1K .., Smax = 2K max (38)

Biases: p, =0.1,p, =2

¢o:TC/ 3

buckling
So risk
locations

Figure 9. Skirt cross section at opening
Decision variable s7 = Ngirt.cytinder OF SKirt cylinder
buckling safety factor
The buckling strength reduction factor

a=a,
a=ag=——22% 1, Roopp (39)
R t
1/1+0.01—
t
a=a, :& IF, $>212
1/o.1+o.01{
The constraint becomes
Et
O < Opyeut,ideal = O-GF =0y (40)

Obuckl = A0 pyckl ideal
the bending stress due to overturning moment My= M,
=My is
M,R

Obend = Oz,my = |—@ (41)
y

2011. Fascicule ¢ [Aprii-Tune]. @copyright FACULTY of ENGINEERING — HUNEDOARA ROMANIA

The safety factor is of buckling endurance of the

cylindrical shell parts of the skirt against both
compressive loading and seismic bending loading is
—_ O-buckl _ ao—cr
skirt.cylinder — - (42)
O-z GZ,P + GZ,My
S7 = Nskirt.cylinder ’PS (7) = P(S7) (43)
Range:s ., =1, S,. =500,
g min ax (44)

Biases: p, =0.1,p, =1
Decision variable s8 = Npgp.not Or safety factor for
hoop tensile stress due to sloshing at root of the
main vessel
Sloshing increases fluid height by increment Z. The
critical location is at bottom.

R R
Ohoop- P :>O-hoop: pg(H + Z)_’
tbot tbot

a=a,=3,¢g=98 (45)

R a R
O-hoopz (1+E .gjngt_ = xago-hoop,bot

The decision variable becomes

o N _ o, (steel)
8 = *Vhoop.bot —

P(8)=Pls;) (46)
O-hoop

A rather high value is desired
Range:s_ .. =0.5, s
Biases: p, =2,p, =0.1

Decision variable sg = Nsjge.1op Or safety factor for

main shell upper side buckling

The model is shown in Fig.10. This buckling risk occurs

close to the top. The dynamic movement of the fluid

inside the vessel is assumed to push the wall forward

while causing the top sides to cave in causing

compressive stresses and a buckling risk.

min max — 81

(47)

A

—

thﬂk <
e

Figure 10. Shell geometry and buckling

While all other decision variable values were
satisfactory this safety factor was below unity,
typically only 0.03. This result predicts that some
buckling probably occurs. But since this is an isolated
location it is not considered as safety critical for the
whole structure.

A, =D-Ah=2RAh,

Ah=x,H=H,x, =1

(48)
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o 0.6%
Nside.top = bOU_CkI = V H 2 (49)
48— —
4tAh{ R

here V is base shear
V=M-S, =M25g

M, =pV,, =pR*H

. 50
K406 X4 _ooea (50)
48 257
phydr :ng

Here M, is mass of liquids H is height and ppyqr is
hydrostatic pressure at bottom

2
E (1t R
SQ = Nside.top = K (j (j ’})3(9): P(SQ)
phydr R H
Now a small value is allowed due to low criticality
Range:s;, =001, s ., =1

(51)

. (52)
Biases: p, =0.1,p, =1

A stiffening ring may be used to limit the buckling
amplitude. If wall thickness is about 3t then the
safety factor is increased by factor of ten to a
reasonable value.
Decision variable s;, = Ngreplate 1S factor of safety
for skirt opening sides using a plate model for sides
of openings
Both direct and bending stress act on the fictive
surrogate plate. The peripheral stress is small close
to the edge of the opening.
For the reduced cross section the second areal
moment about x axis is

1,(0)= |p{§—isin29} ,1,=22Rt  (53)

T 2z

Second area moment around y- axis is larger due to
openings

1,(60)= I{g+isin 29} (54)

The compressive stress at the skirt is due to the load
of the water in the vessel. The effective area is less

than full area
2
O'z,p:Mg:pﬂRHg: HR 1 (55)
A 2(7[—¢0 )Rt

t 2[1_%]
T
M R t)
=— =< =0.53F| —
O-Z,Mx ]x (9) GZ,cr (bj (56)

o

z, plate = O-z,Mx + O-z,P

Here b is effective plate width in buckling.
Thus the decision variable is

2
0.53-E (tj
O-z,cr,plate _ b

Uz,Mx +O—Z,P

S12 =N skirt. plate =

z,plate

(57)

128

Now a wide range is allowed as reasonable.
Range:s, =1, Spx =7,
Biases: p, =0.1,p, =0.1

T
/ Y

1‘ i_ !

1' My

(58)

revyyy

L0

Wy
Figure 11. a) Skirt side buckling; b) Column support
buckling
simply supported
at x =0, x=a

1

R

free edge
Y

\

(
B

y [« 5 q|

Figure 12. Plate buckling model

Decision variable s;3 = Ngyer is safety factor for
Euler buckling of columns

According to Case et al /5] it has been found from
tests on mild-steel pin ended struts that failure of an
initially curved member takes place when the yield
stress is first attained in one of the extreme fibres.
First the column cross section area is calculated

A =21t (59)

The Euler buckling strength is calculated as stress

2
72
Ogyer = E—| = 60
Euler 2 Ip ( )
The total load due to water on the struts is P

P=M,g V=M,g-X,, X,=25 (61)

Here V is seismic shear stress causing bending at
height H lever. The strength reduction factor is

I
n :0.003(1} ry=+r,
rg
The radius of gyration of thin shelled columns is ry =
r,/ V2. The total column stress is due to normal and
bending stress action

F V\H +1

O = o= 1 1P+ ( p) v XR =28 (63)
A A, |4 Xg R

The buckling instability strength of a strut

—1
Astrut =30y + (1 + 77)O-Euler ’

1
_ |1 2 _ 2
Bstrut - [Z Astrut o-y OEuler ]>

1A, -B

(62)

col col

(64)

O'strut strut ~ “strut
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The safety factor is
O

S13 = N Euler.column — % 1 Ps (13): P(813) (65)
tot
Where
Range:s,, =0.5, S, =5 (66)

Biases: p, =2,p, =0.1

RESurrs

Using this optimisation method the design goals are
formulated just as the customer wishes using fuzzy
ideas. In a case study the effect of emphasising
simultaneously desire for very low cost and desire for
very high useful volume and maintaining satisfaction
of other goals is studied. The result is a trade off
between the contradictory and non-contradictory
requirements. Results are shown in Table 4. As
expected, the cost and volume satisfactions were
both low. Other goals were however satisfactory.
Table 4. Emphasis on very low cost and on high useful
volume gave satisfaction Pg = 3.8-10”. Constraint s is not
needed and passed by setting P(sg)=1
numerical
values
0.95,
0.0137
0.164,
2.6 3.1%,
0.005,
382
0.58,
4750
0.078,
95000
1,0.
0.997,
4e5
0.567,
5.37
0.79,
0.032)
0.343,
10.6
0.993,
1.31
0.935,
1.5e4

| properties for optimal model

P(Sl) )
$;= Timp, iMpulsive mass period
P(SZ)v
S,=Teonv, CONVECtive period
P(S3),
s3=V, Volume of inner fluid
P(S4),
s,=Mat, mass of material
P(S5)1
ss = cost of shell material
P(ss), not used
PS(S7)!
S7= Nskirt.oytinder , SKirt.cyl. buckling
P(Sg),
Sg = Nhoop.bot teNsion at | bottom
P(Sg),
So= Nside.top » DUCKIing of shell
P(s10),
s10= acceleration at T, period
P(sll)l
sjy=acceleration at T,,,, period
P(s12),
S12= Ngkirt.plate SKirt plate buckling
P(S13), 0.08,
S13= NEuter.coumn  €Olumn buckling 1.56 :
* Convective mode period with FEM model T=3.1s
The main shell geometry:Radius R = 4.5 wall in upper
section t =0.002, height H = 6, wall at bottom t;.
=0.035,
The column geometry: radius R,=0.08, wall thickness
t, = 0.003, height I, = 2.
Some results are discussed to show the essential
features in this design case study.
The critical decision variables are those with least
satisfaction. Some decision variables have high level
of satisfaction over the range of design variables. This
means that they are not sensitive to changes and thus
need no closer attention. The impulsive acceleration
is over ten and the convective is somewhat over one.
Thus it is much more critical.

le 2 [April-Tun
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Decision variable sy = Nsigetop Or safety factor for
buckling of main shell was small. The consequences to
the overall structure can be determined by FEM. But
by adding a stiffening ring the buckling factor of
safety can be increased.

The satisfaction on s; = Ngirt.cylinder OF the skirt cylinder
buckling safety factor was not high enough. Thus some
strengthening is needed.

The satisfaction on S;= Naircplate OF SKirt surrogate
plate buckling at the sides of the opening was too
small. Thus some strengthening is also needed.

The satisfaction on sg = Nyeop.pot OF safety factor on the
hoop tensile stress at shell bottom was over five but
according the set satisfaction function it was not high
enough. Justification for desiring high safety factor
was that the bottom shell is a safety critical area of a
large vessel. However, this shows that some rational
fine-tuning of desire levels is needed

Comparison of the skirt and column support choices.
The simplified dynamical model of Fig.1 has one
lumped mass and two effective springs

A. Skirt supported model. Eigenfrequency period is
small Tgi+ = 0.0026 s and damping z = 0.02 give the
spectral acceleration is Sergirt = 3.17

B. Column supported model. Eigenfrequency period is
now long Teowmn = 0.036 s and damping z=0.02 gives for
the spectral acceleration Setcoymn = 5.26.

Thus there is not very great difference in Se values
and selection between them may be made using other
criteria.

Simple dynamical model showed that the skirt
supported structure is somewhat more satisfactory
than the column supported model. The main reason is
that the stiffness of the skirt support is high giving
short eigenperiod and thus it generates a relatively
small spectral acceleration. But the stiffness of column
support is low causing long eigenperiod and spectral
acceleration which is higher than for the cylindrical
skirt. For both support types the safety factor against
buckling is only about unity. This shows that more
stiffening is needed.

FEM MODEL RESULTS

The main geometry of the FEM model is shown in
Fig.13. Radius R = 4.5and height G = 6m are the same
as obtained by optimum design. But now the
advantage of FEM was used to choose different wall
thickness which us structurally and also optimal to
manufacture

Layer 1, z=0...1m, wall is t=0.025.

Layer 2 ,z=1..3m, wall is t=0.010.

Layer 3, z= 3...6m, wall is t=0.004.

Accurate convective mode period was obtained by
standard (1) as T, = 3.1. The approximate model gave
less 2.6. This accurate standard modelling gave the
impulsive pressure on the projection area between
heights z =0 to z=4.5 m and convective equivalent
pressure extends from z= 6-4.116 to 6.

This means that they overlap. This
distribution is transferred to FEM model.
The deformation result is shown in Fig. 14.

pressure
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Figure 14. FEM results

By comparing the FEMin Fig. 14 it seems that the
result resembles the prediction of shell theory for
thebuckling risk of main shell upper side buckling in
Fig. 15.

Figure 15. Buckling risk sketch for the shell theory
prediction for main shell upper side buckling.

CONCLUSION

A preliminary optimal design of seismically loaded
liquid containing vessels is essential get the main
dimensions within correct ranges before detailed
design by FEM. This methodology makes possible to
consider the simultaneous interaction of various
choices like loads, dimensions, materials and limit
states on the result. All important design events like
cost and limit states are expressed as decision
variables and the fuzzy customer satisfaction function
distribution on them. Then the total satisfaction is
calculated as product of functions.

The optimisation method is composed of analytical
probing of assumed risk locations with physical
variable models.

The optimisation goal is to obtain optimal main
dimensions and shapes, the critical locations using
basic mechanics and simplified standard calculation.
It showed that the impulsive seismic acceleration was
more critical for optimality than the convective
acceleration.

The suggested optimum result was checked by FEM
modelling. Both models predict a buckling risk at
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upper sides of the vessel caused by to fluid motion
against the wall.

The FEM results show reliably and graphically the
behaviour of the structure under loads.

Both methods supplement each other by adding their
strong points and compensating weaknesses by
synergy.

The FEM methods is done is steps. First the main
dimension of the vessel and seismic environments data
is assembled. Most of this data is given by the
customer. Next the relevant standards are used to get
loading data for the FEM models.

Third the FEM model shows the deformations, stresses
and eigen frequencies and modes for some parts. The
fourth step is to make iterative optimising changes to
the structure and rerun the model until result is
satisfactory.

The future vision is to combine the three main design
methods. First is the analytical concept innovation and
optimisation to get main parameters. The second is
fine-tuning with FEM. The third step is to use as
guidelines in both steps the requirements of standards
and global megatrends in ecology and technology.
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