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 ABSTRACT: 

Finite difference solution of the homogeneous first order chemical reaction on unsteady flow past an 
impulsively started semi-infinite vertical plate in the presence of thermal radiation have been studied. The 
fluid considered is a gray, absorbing-emitting radiation but non-scattering medium. The dimensionless 
governing equations are solved by an efficient, more accurate, unconditionally stable and fast converging 
implicit scheme. The effect of velocity and temperature for different parameters like chemical reaction 
parameter, radiation parameter, Schmidt number, thermal Grashof number, mass Grashof number and time are 
studied. The velocity profiles are compared with available exact solution in the literature and are found be in 
good agreement.  
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INTRODUCTION 
Radiative convective flows are encountered in 
countless industrial and environment processes e.g. 
heating and cooling chambers, fossil fuel combustion 
energy processes, evaporation from large open water 
reservoirs, astrophysical flows, solar power 
technology and space vehicle re-entry. Radiative heat 
and mass transfer play an important role in 
manufacturing industries for the design of reliable 
equipment. Nuclear power plants, gas turbines and 
various propulsion device for aircraft, missiles, 
satellites and space vehicles are examples of such 
engineering applications. 
England and Emery (1994) have studied the thermal 
radiation effects of a optically thin gray gas bounded 
by a stationary vertical plate. Soundalgekar and 
Takhar (1993) have considered the radiative free 
convective flow of an optically thin gray-gas past a 
semi-infinite vertical plate. Radiation effect on mixed 
convection along a isothermal vertical plate were 
studied by Hossain and Takhar (1996). In all above 
studies, the stationary vertical plate is considered. 
Raptis and Perdikis (1999) have studied the effects of 
thermal radiation and free convection flow past a 
moving infinite vertical plate. Again, Raptis and 
Perdikis (2003) studied thermal radiation effects on 
moving infinite vertical plate in the presence of mass 
diffusion. The governing equations were solved by the 
Laplace transform technique. 

Chemical reactions can be codified as either 
heterogeneous or homogeneous processes. This 
depends on whether they occur at an interface or as a 
single phase volume reaction. Many transport 
processes exist in nature and in industrial applications 
in which the simultaneous heat and mass transfer as a 
result of combined buoyancy effects of thermal 
diffusion and diffusion of chemical species.  
In many chemical engineering processes, there does 
occur the chemical reaction between a foreign mass 
and the fluid in which the plate is moving. These 
processes take place in numerous industrial 
applications, e.g., polymer production, manufacturing 
of ceramics or glassware and food processing. 
Apelblat[1] studied analytical solution for mass 
transfer with a chemical reaction of the first order. 
Chambre and Young (1958) have analyzed a first order 
chemical reaction in the neighborhood of a horizontal 
plate. Das et al (1994) have studied the effect of 
homogeneous first order chemical reaction on the flow 
past an impulsively started infinite vertical plate with 
uniform heat flux and mass transfer. The 
dimensionless governing equations were solved by the 
usual Laplace-transform technique and the solutions 
are valid only at lower time level. 
Analytical or numerical work on transient natural 
convection along an impulsively started vertical plate 
under the combined buoyancy effects of heat and mass 
diffusion in the presence of thermal radiation and 



 
chemical reaction has not received attention of any 
researcher. Hence, the present study is to investigate 
first order chemical reaction on flow past an 
impulsively started semi-infinite vertical plate in the 
presence of thermal radiation by an implicit finite-
difference scheme of Crank-Nicolson type. 
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MATHEMATICAL ANALYSIS 
A transient, laminar, unsteady natural convection 
flow of a viscous incompressible fluid past an 
impulsively started semi-infinite vertical plate has 
been considered. The fluid considered is a gray, 
absorbing-emitting radiation but non-scattering 
medium. It is assumed that there is a first order 
chemical reaction between the diffusing species and 
the fluid. Here, the x -axis is taken along the plate in 
the vertically upward direction and the y -axis is 
taken normal to the plate. Initially, it is assumed that 
the plate and the fluid are of the same temperature 
and concentration. The plate starts moving 
impulsively in the vertical direction with constant 
velocity  against gravitational field and the 
temperature of the plate and the concentration level 
are also raised to  and . They are maintained at 
the same level for all time . Then under the 
above assumptions, the governing boundary layer 
equations of mass, momentum and concentration for 
free convective flow with usual Boussinesq's 
approximation are as follows: 
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For the case of an optically thin gray gas the local 
radiant absorption is expressed by 
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We assume that the temperature differences within 
the flow are sufficiently small such that  may be 
expressed as a linear function of the temperature. 
This is accomplished by expanding  in a Taylor 
series about  and neglecting higher-order terms, 
thus 
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By using equations (6) and (7), equation (3) reduces to   
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On introducing the following non-dimensional 
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Equations (1) to (4) are reduced to the following non-
dimensional form  
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The corresponding initial and boundary conditions in 
non-dimensional quantities are   
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NUMERICAL TECHNIQUE 
In order to solve these unsteady, non-linear coupled 
equations (10) to (13) under the conditions (14), an 
implicit finite difference scheme of Crank-Nicolson 
type has been employed. The finite difference 
equations corresponding to equations (10) to (13) are 
as follows:  
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Here the region of integration is considered as a 
rectangle with sides  and , where 

 corresponds to 
1)(=maxX

∞=

14)(=maxY

maxY Y  which lies very well 
outside both the momentum and energy boundary 
layers. The maximum of Y  was chosen as 14 after 
some preliminary investigations so that the last two of 
the boundary conditions (14) are satisfied with in the 
tolerance limit . 510−

After experimenting with a few set of mesh sizes, the 
mesh sizes have been fixed at the level 0.05=XΔ , 

 with time step 0.25=YΔ 0.01=tΔ . In this case, the 
spatial mesh sizes are reduced by 50% in one 
direction, and later in both directions, and the results 
are compared. It is observed that, when the mesh size 
is reduced by 50% in the Y -direction, the results 
differ in the fifth decimal place while the mesh sizes 
are reduced by 50% in X -direction or in both 
directions, the results are comparable to three 
decimal places. Hence, the above mesh sizes have 
been considered as appropriate for calculation. The 
coefficients  and  appearing in the finite-
difference equations are treated as constants in any 
one time step. Here -designates the grid point along 
the 

n
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n
iV , j

i
X -direction,  along the j Y -direction and  to 

the -time.The values of 
k

t U ,V  and T  are known at 
all grid points at t  from the initial conditions. 0=
The computations of TVU ,,  and  at time level 

 using the values at previous time level  are 
carried out as follows: The finite difference Equation 
(18) at every internal nodal point on a particular i -
level constitute a tridiagonal system of equations. 
Such a system of equations are solved by using Thomas 
algorithm as discussed in Carnahan  et al [1].  
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Thus, the values of C  are found at every nodal point 
for a particular i  at  time level. Similarly, the 
values of 

th1)+n(
T  are calculated from Equation (17). Using 

the values of C  and T  at  time level in the 

equation (16), the values of 
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U  at  time level 
are found in a similar manner. Thus, the values of 

 and 

thn 1)+(

TC , U  are known on a particular -level. 
Finally, the values of V are calculated explicitly using 
the Equation (15) at every nodal point on a particular 

-level at  time level. This process is repeated 
for various i -levels. Thus the values of  and V  
are known, at all grid points in the rectangular region 
at  time level. 

i

i

n(

th1)n( +
U,TC ,

th1)+
In a similar manner computations are carried out by 
moving along the i -direction. After computing values 
corresponding to each  at a time level, the values at 
the next time level are determined in a similar 
manner. Computations are repeated until the steady-
state is reached. The steady-state solution is assumed 
to have been reached, when the absolute difference 
between the values of 

i

U , as well as temperature T  
and concentration  at two consecutive time steps 
are less than  at all grid points. 

C
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STABILITY ANALYSIS 
The stability criterion of the finite difference scheme 
for constant mesh sizes are examined using Von-
Neumann technique as explained by Carnahan  et al 
(1980). The general term of the Fourier expansion for 

 and  at a time arbitrarily called , are 
assumed to be of the form 

TU , C 0=t
)Yi(exp)(exp Xi βα  (here 

1= −i ). At a later time t , these terms will become,  
                     )(exp)(exp)(= YiXitFU βα  
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                    )(exp)(exp)(= YiXitHC βα  
Substituting (19) in Equations (16) to (18); under the 
assumption that the coefficients TU ,

G′

 and C  are 
constants over any one time step and denoting the 
values after one time step by  and F ′, H ′ . After 
simplification, we get 
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Equations (20) to (22) can be rewritten as,  

HEHE

GBGB

tHH
Gc

tGG
Gr

FAFA

)(1=)(1

)(1=)(1

)(
2

)(
2

)(1=)(1

−′+
−′+

Δ+′+

Δ+′+−′+

    (23) 

where,  

2)(
1)cos()(sin

2

))(exp(1
2

=

Y

t
YYi

Y

tV

Xi
X

tU
A

Δ
Δ

−Δ−Δ
Δ
Δ

+

Δ−−
Δ
Δ

ββ

α

 

 
34 

Pr

tR

Y

t

Pr

Y
Yi

Y

tV

Xi
X

tU
B

2)(

1)cos(
)(sin

2

))(exp(1
2

=

2

Δ
+

Δ
Δ−Δ

−Δ
Δ
Δ

+

Δ−−
Δ
Δ

ββ

α

 

2)(

1)cos(
)(sin

2

))(exp(1
2

=

2

tK

Y

t

Sc

Y
Yi

Y

tV

Xi
X

tU
E

Δ
+

Δ
Δ−Δ

−Δ
Δ
Δ

+

Δ−−
Δ
Δ

ββ

α

 

After eliminating  and G′ H ′  in Equation (23) using 
Equations (24) and (25), the resultant equation is 
given by,   
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Equations (23) to (25) can be written in matrix form as 
follows:   
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Now, for stability of the finite difference scheme, the 
modulus of each eigen value of the amplification 
matrix does not exceed unity. Since the matrix 
Equation (25) is triangular, the eigen values are its 
diagonal elements. The eigen values of the 
amplification matrix are , ))/(1(1 AA +− ))/(1(1 BB +−  
and . Assuming that, ))/(1(1 EE +− U  is everywhere 
non-negative and V is everywhere non-positive, we 
get 
 

 

)sinsin(

2
sin2

2
sin2= 22

YbXai

Y
c

X
aA

Δ−Δ+

⎟
⎠

⎞
⎜
⎝

⎛ Δ
+⎟

⎠

⎞
⎜
⎝

⎛ Δ

βα

βα
 

Where,  

2)(
=,

2

||
=,

2
=

Y

t
c

Y

tV
b

X

tU
a

Δ
Δ

Δ
Δ

Δ
Δ

 

Since the real part of  is greater than or equal to 
zero, 

A
|) 1)/(1(1| ≤+− AA

1|)

 always. Similarly, 
)/(1(1| ≤+− B (1B  and 1|))/(1 ≤+| − EE . 

Hence the finite difference scheme is unconditionally 
stable. The local truncation error is  
and it tends to zero as 

)( 22 XYtO Δ+Δ+Δ
Xt ΔΔ ,  and YΔ  tend to zero. 

Hence the scheme is compatible. Stability and 
compatibility ensures convergence. 
RESULTS AND DISCUSSION 
Representative numerical results for the uniform heat 
and mass diffusion in the presence of radiation and 
chemical reaction will be discussed in this section. In 
order to ascertain the accuracy of the numerical 
results, the present study is compared with the 
available exact solution in the literature. The velocity 
profiles for  

and 

2,5=2,5,=0.16,0.2,=0.2,= GcGrScK

0.71=Pr  (corresponding to tY/2=η ) are 
compared with the available exact solution of Das et al 
(1994) at  in figure 1 and they are found to be 
in good agreement. It is observed that the present 
results are in good agreement with the available 
theoretical solution at lower t

0.2=t

ime level. 
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Figure 1. Comparison of velocity profiles 

 

The effect of steady-state velocity profiles for 
different radiation parameters ( 0,2,5=R ), 

 and  are 
shown in figure 2. It is observed that the velocity 
increases with decreasing radiation parameter. This 
shows that velocity decreases in the presence of high 
thermal radiation. However, the time required for the 
velocity to reach steady-state depends upon the 
radiation parameter. 
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Figure 2. Velocity profiles for different values of R 
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Figure 3. Velocity profiles for different values of K 

 
The effect of velocity for different chemical reaction 
parameter ( ),  
and  are shown in figure 3. It is observed that 
the velocity increases with decreasing chemical 
reaction parameter. 

0,2,10=K 0.71=2,=5,=5,= PrRGcGr
0.6=Sc

0

0.5

1

1 .5

2

2.5

0 0.2 0.4 0.6 0.8Y

U

Gr   Gc
  2        5

5        5

5      10

Pr=0.7 1
Sc=0.60
K=0.2
R=2

 
Figure 4. Velocity profiles for different values Gr, Gc 
 

 
In figure 4, the velocity profiles for different thermal 
Grashof number( ), mass Grashof number 
( and 

2,5=Gr

0.6,= R 0.2=2,=5,10),= KScGc 0.71=Pr  
are shown graphically. This shows that the velocity 
increases with increasing thermal Grashof number or 
mass Grashof number. As thermal Grashof number or 
mass Grashof number increases, the buoyancy effect 
becomes more significant, as expected, it implies that, 
more fluid is entrained from the free stream due to 
the strong buoyancy effects as Gr  or  increases.  Gc
The transient temperature profiles for different values 
of the thermal radiation parameter 
(  and  are shown in 
figure 5. It is observed that the temperature increases 
with decreasing 

5==0,2,5),= GcGrR 0.2=K

R . This shows that the buoyancy 
effect on the temperature distribution is very 
significant in air( 0.71=Pr ). It is known that the 
radiation parameter and Prandtl number plays an 
important role in flow phenomena because, it is a 
measure of the relative magnitude of viscous boundary 
layer thickness to the thermal boundary layer 
thickness. 
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Figure 5. Temperature profiles 

for different values of R 
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Figure 6. Concentration profiles 

for different values of K 
 



 
  

The steady-state concentration profiles for different 
chemical reaction parameter (  
and  are shown in figure 6. The effect of 
chemical reaction parameter play an important role in 
concentration field. There is a fall in concentration 
due to increasing the values of the chemical reaction 
parameter. 
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Knowing the velocity and temperature field, it is 
customary to study the skin-friction and the Nusselt 
number. The local as well as average values of skin-
friction and Nusselt number in dimensionless form are 
as follows:  
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The derivatives involved in the Equations (28) to (33) 
are evaluated using five-point approximation formula 
and then the integrals are evaluated using Newton-
Cotes closed integration formula. 
The Local values of the skin-friction, Nusselt number 
and Sherwood number for fixed parameters 

 and  
are plotted in figures 7, 8 and 9 respectively. Local 
skin-friction values are evaluated from equation (28) 
and plotted in figure 7 as a function of the axial 
coordinate. The local wall shear stress increases with 
increasing chemical reaction parameter or chemical 
reaction parameter. It is clear that there is a fall in 
local skin-friction with decreasing radiation 
parameter. Such effect is predominant with respect to 
radiation parameter than for chemical reaction 
parameter. This is because, the velocity is affected 
more by 

0.2=2,=0.71,=5,== KRPrGcGr 0.6=Sc

R  than by K . The value of the skin-friction 
becomes negative, which implies, that after some 
time there occurs a reverse type of flow near the 
moving plate. Physically this is also true as the motion 
of the fluid is due to plate moving in the vertical 
direction against the gravitational field. The rate of 
heat transfer increases with decreasing values of the 
radiation parameter.  
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Figure 7. Local skin-friction 
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Figure 9. Local Sherwood number 
 

The Local Sherwood number for different values of the 
chemical reaction parameter are shown in figure 9. 
The trend shows that the rate of concentration 
decreases 
a
 



 
 
The average values of the skin-friction, Nusselt 
number and Sherwood number are shown in figures 
10, 11 and 12 respectively. The effects of the 
radiation parameter on the average values of the skin-
friction are shown in figure 10. The average skin-
friction decreases with decreasing radiation 
parameter. The average Nusselt number increases 
with increasing radiation parameter. The average 
Sherwood number increases with 
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increasing values of 
the chemical reaction parameter. 
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Figure 11. Average Nusselt number 
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Figure 12. Average Sherwood number 

 

 
CONCLUSION 
Finite difference study has been carried out for 
unsteady thermal radiation effects on flow past an 
impulsively started semi-infinite vertical plate in the 
presence of chemical reaction of first order. The 
dimensionless governing equations are solved by an 
implicit scheme of Crank-Nicolson type. A comparison 
between the present numerical results and available 
theoretical solution in the presence of chemical 
reaction are also made. The agreement between the 
two is found to be very good. The effect of velocity, 
temperature and temperature for different parameter 
are studied. The local as well as average skin-friction 
and Nusselt number are shown graphically. It is 
observed that the contribution of mass diffusion to the 
buoyancy force increases the maximum velocity 
significantly. It is also observed that the velocity 
decreases in the presence of thermal radiation or 
chemical reaction. The study shows that the number of 
time steps to reach steady-state depends strongly on 
the radiation parameter and chemical reaction 
parameter. 
NOMENCLATURE 
a*    absorption coefficient  
C’    species concentration in the fluid 

n  

y 
er 

uid 

age Nusselt number    

eter 

average Sherwood number  

ionless temperature  

onents of the fluid in X,Y-directions 

y components in X,Y-

he plate 

imensionless spatial coordinate normal to the 

Gr

C     dimensionless concentratio
D     mass diffusion coefficient 
g      acceleration due to gravit
Gr      thermal Grashof numb
Gc   mass Grashof number 
K      thermal conductivity of the fl
Kl     chemical reaction parameter 
NuX  dimensionless local Nusselt number 
Nu    dimensionless aver
Pr      Prandtl number   
R      radiation param
Sc    Schmit number 
ShX   dimensionless local Sherwood number  
Sh     dimensionless 
T‘      temperature 
T       dimens
t ‘       time 
t        dimensionless time 
u0         velocity of the plate 
u,v    velocity comp
respectively  
U,V   dimensionless velocit
directions respectively  
x       spatial coordinate along the plate 
X      dimensionless spatial coordinate along t
y       spatial coordinate normal to the plate 
Y      d
plate 

eek  symbols 
α     thermal diffusivity 
 β     coefficient of volume expansion 
 β*   volumetric coefficient of expansion with 

     coefficient of viscosity  
concentration  
 μ
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υ      kinematic viscosity   AUTHORS & AFFILIATION 
τ

x    dimensionless  local skin-friction  1.T. KULANDAIVEL, 
  

 2.R. MUTHUCUMARASWAMY 

MATHEMATICS, SRI VENKATESWARA 

RIPERUMBUDUR 602 105, INDIA 

 

τ  dimensionless average skin-friction 

w 
ns in the free stream 

Subscripts 
   conditions at the wall 

∞    conditio
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