
 
1 SONIA PETRILA, 2. TITUS PETRILA  

 

 
FLUID FLOW INDUCED BY A MOBILE PROFILE  

WITH NON-CONSTANT CIRCULATION  
 

 
 
 

 
 Abstract: 

This paper deals with an approach of the inviscid 2-dimensional fluid flow induced by the 
rototranslation of a profile (with a cuspidal point) in the fluid mass, by accepting a non-constant 
circulation  around the profile, i.e., multiformity for the pressure field. Some aerodynamic 
characteristics of a flow induced by an oscillatory motion of a Joukovski profile are calculated.  
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 GENERALITIES ON THE UNSTEADY FLOW 

INDUCED BY A MOBILE PROFILE 
 

Let us consider the two-dimensional unsteady 
irrotational flow of an inviscid incompressible 
fluid, induced by the motion of a (wing) profile c 
with a cuspidal point at the trailing edge, the 
fluid being supposed at rest at infinity. The 
contour of the profile c is a simple, closed 
rectifiable curve  while the exterior mass 
forces are neglected. 
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By considering a fixed of rectangular 
coordinates  together with a mobile frame 11 yOx

Oxy  linked to the mobile profile, we denote at 
every time t, by 

, 
by  the affix of the origin of the 
system 
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Oxy  which has the velocity )v,u(v 000
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an arbitrary point  while )c(extM∈ )j,i(
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 and 
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rr
 are the unit vectors of the mobile and 

fixed coordinates system respectively, by 
 the instantaneous rotation of the 

mobile frame. We can write that the absolute 

velocity, 

),0, ω0(ω
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vr , of a fluid particle, located at )r(M
r

, is 
given by rt vvjviuv
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×ω+=  is the transport velocity 
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=  is the relative 
velocity of the fluid particle . M
Concerning the fluid flow equations (within the 
mobile frame ), denoting by , p ρ , V  the 
pressure, the mass density and the magnitude of 
the absolute velocity respectively, they are 
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In what follows we will accept the multiformity 
of the pressure field which leads to a period of 
the pressure around the profile and implicitly to 
a non-constant circulation  around the 
contour

)t(Γ
c∂ . 

By introducing the complex potential 
)t;y,x(i)t;y)t;z(f ,x( ψ+ϕ=  and the complex 

velocity ivu)z('fw −== , where 
x

u =
∂
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= , for solving the above proposed 
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flow problem, we are led to the following 
boundary value problem for the complex 
potential: 
Find the function  so that C→≡ )c(extd:f

1.  is holomorphic in the unbounded 
domain 
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d, , 0t >∀
2.  is a uniform holomorphic 
function in 
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In order to solve this problem we will follow the 
classical conformal mapping technique. 
Denoting by  

dD:H → , ...
Z
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a
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the conformal mapping which applies the 
exterior  of a circumference  of centre  
and radius 

D C O
R , i.e., , of the plane  

, onto the physical flow domain 
)R,O(C OXY

)iYXZ( += d, 
the transformed complex potential 
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a holomorphic function in  which is 
regular at infinity and whose imaginary part 

 on the circumference satisfies 
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But this exterior Dirichlet problem for a circle 
could be solved by considering the Schwartz-
Villat formula for determining the flow with 
circulation , i.e.,  )t(Γ
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Assuming that the cuspidal point at the trailing 
edge of our profile with the affix bb iyxb +=  
corresponds to the point RZ =  of the plane , 
the involved conformal mapping could be 
represented in the form  

Z
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and its derivative by )Z(q)RZ()Z('H 1−=  where  
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Following now the Couchet way [2] for a 
complete determining of the complex potential 
of the flow, we will express the unknown 
complex potential  under the form: )Z(F
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Considering the complex velocity 
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by imposing the Joukovski rule (at the image of 

the cuspidal point) 0
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)t;Z(dF

RZ

=
=

, we get the 

necessary value of the circulation , namely, )t(Γ
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The velocity expression  becomes )ivu( −
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where )R(Ω=Ω  and )R('' Ω=Ω . 
 

 THE CASE OF JOUKOVSKI TYPE PROFILE 
 

Let us now consider the particular case of a 
Joukovski type profile. To make precise by using 
a conformal mapping of the type 

0

2
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0 XZ
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++== , 1X0 0 << , 

the image of the circumference  of the 
plane 
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Z  becomes the considered Joukovski 
profile whose rototranslation induces the fluid 
flow. We denote by AB  ( A , , )0,a( )0,b(B

)1(Ha −= , )1(Hb = ), the profile chord, its trailing 
edge (cuspidal point) being . )1(Hb =z =
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We also obtain the expressions 
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The circulation and the complex potential are, 
respectively, 
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and the value of the velocity at the trailing edge 
is ω−+−−=−
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The non-constant circulation  implies a 
multiform pressure field, the pressure admitting 
a period around the profile. So, from Bernoulli 
formula we obtain 
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FIGURE 1. Aerodynamic coefficients for oscillating 
Joukovski J010 airfoil 
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We denoted
2
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The continuous line represents our results and 
the dotted line in the diagram “  versus 
incidence”, represents the results obtained in the 
paper [4]. 
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