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 Abstract: 

The operation of separation of seeds is realized due to the vibration of sieve. The operation of 
separation is analyzed with the help of the particle model which executes vibration motions on a 
plane with friction. There are analyzed displacement regimes of particle by forward sliding and back 
sliding without detachment. Because of velocity discontinuity which appears as consequence of 
friction between particle and plan or of dropping on plan in the case of detachment, vibro-impact 
motion regimes appear. That is why, for the study of motion, there are applied the specific methods, 
concerning the vibro-impact regimes.  
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Generally, the phenomenon of vibro-transfer is 
essentially influenced by the material behavior, 
characterized by composition, humidity, 
adherence, nature etc. In the first 
approximation, the experiences shown that the 
material can be schematized by a simple 
material particle which moves with friction on 
the vibrating surface (Figure 1). 
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Figure 1. Dynamic model 

The particle of mass m is supposed to be placed 
on the vibrating plan, inclined to the angle α, in 
relation to the horizontal surface. It is supposed 
that the vibrating plan executes a vibration 
translation motion on a direction which makes 
the angle β with the inclined plan and it has the 
amplitude r. Thus, a current point of the plan 
executes a vibration displacement, given by the 
law rsinψ, on a direction which makes the angle 
β with the inclined plan, where ψ=ωt. So, in 
relation to the fixed frame O1x1y1, the 
coordinates of the point O, the origin of the 
mobile frame Oxy, bound to the inclined plan, 
(figure 1), at a certain moment are 
 

ψβ sincos0 rx =  
 

and 
 

ψβ sinsin0 ry =                        (1) 
 

The differential equation of relative motion of 
particle of mass m has the form 
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                         tfr FgmNFam +++=                 (2) 
 
Because the transport force of inertia is 

tt amF −= , where at is the acceleration of 
transport of particle, identical to the 
acceleration of the point O, the components of 
the transport force of inertia are 
 

ψβω sincos2
0 mrxmFtx =−= && ,            (3) 

 

ψβω sinsin2
0 mrymFty =−= && . 

 
As consequence, the differential equation of 
relative motion (2) has the following projections 
on the axes of the frame Oxy:  
 

αψβωμ sinsincos2 mgmrxNsignxm −+−= &&& , (4) 
 

αψβω cossinsin2 mgmrNym −+=&& . 
 

Taking into account that there are considered 
only the motions of particle, in contact to the 
plan, it must be put y=0, so that from the 
second equation (4), it results 
 

 .             (5) ( ψβωα sinsincos 2rgmN −= )
 

 CHARACTERISTICS OF MOTION OF SLIDING 
 

As a principle, the particle which is situated in 
the rest position, at a certain moment becomes 
to slide on the plan, forward or back. 
For the beginning it is supposed that the particle 
executes a forward sliding motion in relation to 
the sieve. On the particle act the force of weight 
mg, the normal reaction N, and the force of 
friction F= μΝ; the motion of transport being a 
translation, the Coriolis force of inertia is null. 
If the expression (5) of the normal reaction N is 
introduced in the first differential equation in 
(4), it arrives at the following relation: 
 

 ( ) ( )
ψ

φ
φβω

φ
φα

sin
cos

cos

cos

sin 2 −
+

+
−=

rg
x&& , (ψ=ωt). (6) 

 
This relation represents the fundamental 
equation for the study of the forward motions of 
sliding on the vibrating sieve. 
The beginning moment of the forward sliding is 
denoted by t=t1 and so, 11 tωψ =

&&

. It can 
mention that this moment corresponds to the 
condition that the acceleration x  to be null. 

 
If the acceleration (6) is made equal to zero, it is 
obtained the following equation, in the initial 
moment of the forward motion of sliding: 
 

( )
( )φβ

φα
ω

ψ
−
+

⋅=
cos

sin
sin 21 r

g                       (7) 

 
Taking into account the relation (7), the 
fundamental equation (6) can be also written 
  

 ( )( )1
2 sinsin

cos

cos ψψ
φ
φβω −

−
= rx&&             (8) 

 
The forward motion of sliding is characterized by 
t > t1 and so, ψ > ψ1. 
Considering the function , if >0, the 
function  is increasing. Thus, from the moment 
t = t1 when the velocity is nullifying, i.e. 

( )txx && = x&&
x&

( ) 01 =tx&  
and >0, it results >0. So, the forward motion 
of sliding takes place. Thus, from the relation (8), 
written for the moment given by ψ1 it must be 
satisfied the inequality  

x&& x&

 

 sinψ > sinψ1.                             (9) 
 

From the relation (7), written for ψ1 it can be 
supposed that ( )21 0 πψ ;∈  which, in accordance 
to the inequality (9), leads to the condition 

( )11; ψ−πψ∈ψ . 
By integrating the differential equation of sliding 
motion which begins for t=t1 it is found  
 

 ( )
( ⎥

⎦

⎤
⎢
⎣

⎡
−⋅+

−−
−=

11

1

sin

coscos

cos

cos

ψψψ
ψψ

φ
φβωrx& )   (10) 

 
The forward regime of sliding stops at the 
moment , respectively the angle  
which corresponds to the nullifying of the 
relative velocity, 

/
1tt = /

1ψ=ψ

0=x& . So, by nullifying the 
expression of , it is deduced the equation x&
 

 
/
11

1
/
1

1

coscos
sin

ψψ
ψψ

ψ
−

−
=                  (11) 

 
This equation permits the calculus of the 
moment , corresponding to the cessation of 
sliding. 

/
1tt =

The distance, covered in the case of the forward 
sliding is given by the integral 
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∫=
/
1

1

2,1

t

t

dtxs &                             (12) 

 
Taking into account the relation (10), after the 
effecting of calculus, the integral (12I) becomes 
 

( ) ( )
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⎥
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⎤
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ψψψψψ

ψψψ

φ
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s  (13) 

 

If in the relation (13) it is replaced 1ψsin  given 
by the equation (11), then for the displacements 
with forward sliding, it can be written the 
relation 
 

 ( ) ( )11 cos

cos ψ
φ
φβ

Φ⋅
−

=
r

s ,              (14) 

 
In an analogous way it is treated the case 
corresponding to the back motion of sliding. By 
back sliding it means the relative motion with 
friction of the material particle on the vibrating 
sieve, in the negative direction of the Ox axis, 
i.e. in opposite direction to the transporting one. 
Taking into account that the force of friction is 
orientated in the positive direction of the Ox 
axis and projecting the differential equation of 
the relative motion, it is obtained 
 

     (15) ψβωαμ sincossin 2mrmgNxm +−=&&
 
or, if it is taken into account the equation (2), it 
results 
 

 ( ) ( )
ψ

φ
φβω

φ
φα

sin
cos

cos

cos

sin 2 +
+

−
−= r
g

x&&       (16) 

 
This relation represents the fundamental 
equation for the study of the back motions of 
sliding on the vibrating sieve. 
The back sliding begins at the moment t=t2 and 

22 tω=ψ , when . 0=x&&
From the expression (16) of the acceleration, 
made equal to zero, it is obtained the equation 
 

 ( )
( )φβ

φα
ω

ψ
+
−

⋅=
cos

sin
sin

22
r

g                (17) 

 
Taking into account the relation (17), the 
fundamental equation (16) can be also written as 
fallows:  
 

 ( )( )2
2 sinsin

cos

cos ψψ
φ
φβω −

+
= rx&&        (18) 

 
Because the back motion of sliding begins at the 
moment t=t2 and it correspunds to the interval t 
> t2, respectively ψ >ψ2 , in the same way as in 
the previous case, it is considered the function 

( )txx && =  which, for x&& <0, is a decreasing one. 
Thus, begining with the moment t=t2 for wich 
( ) 02 =tx&& , the velocity x&  is negative (  < 0), so 

that a back motion of sliding takes place. 
x&

In accordance to the relation (18) and from the 
condition <0, it results x&&
 

 sinψ < sinψ2.                      (19) 
 

Supposing ψ2 given by the relation (17) in the 
first quadrant, i.e. ( 22 ;0 π∈ψ ) , it results that the 

angle ψ must be in the interval ( )πψ−π∈ψ 2;2 . 
By the integration of the differential equation 
(18), it is obtained the expression of the velocity: 
 

 
( )

( ⎥
⎦

⎤
⎢
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−⋅+

−+
−=

22

2
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coscos

cos

cos

ψψψ
ψψ

φ
φβωrx& )   (20) 

 
The end of duration of the back sliding is 
obtained by nullifying the expression of the 
velocity , given by the relation (20). The final 
moment, denoted by , respectively the 

angle 

x&
/tt 2=

/
2ψψ = , is obtained by solving the 

transcedental equation 
 

 /
22

2
/
2

2

coscos
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ψψ
ψψ

ψ
−
−

=                   (21) 

 
The distance, covered in the case of the back 
sliding, is given by the integral 
 

                             (22) ∫=
/
2

2

2

t

t

dtxs &

 
Taking into account the relation (20), after 
effecting the calculus, becomes 
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If in the relation (23), it is replaced 2ψsin  given 
by the equation (21), then for the displacements 
with back sliding, it can be written the relation 
 

 
( ) ( )22 cos

cos ψ
φ
φβ

Φ⋅
+

=
r

s                (24) 

 

If during the time 
ω
π2

=T , the material particle 

moves by forward and back sliding, the advance 
in the positive direction of the axis  has the 
value 

11xO

 
                              (25) 21 sss −=
 
and the average velocity of particle is 
 

 ( ) ( )
π
ω
2

1
2121 ss

T
ssvm −=−= .         (26) 

 

 
Figure 2. Absolute velocity, transport velocity and 

displacement 
 
The graphical representations of the absolute 
velocity v, transport velocity vt and 
displacement st with sliding along the vibrating 
sieve, on which there are superposed the slips s1 
and s2, are shown in Figure 2, for a cycle of 
vibration. 

 
 CONCLUSION 

 
All obtained results correspond to the case of 
sliding motion, without detachment, i.e. for N > 
0. In accordance to the relation (5), it results 
 

                 ψsin <
β
α

ω sin

cos
2
⋅

r

g .                (27) 

 
The analysis of possible motion regimes can be 
more easily made with the help of the 
kinematical index: 
 

 
g

r
K

2ω
=                             (28) 

Thus, a condition for do not exist detachment, in 
accordance to the relation (5), is that the 
equation N=0 do not have solution, that leads to 
the inequality 
 

 K<
β
α

sin
cos                             (29) 

 
Now, it is supposed the condition (27) as 
satisfied, so that all regimes of motion are with 
sliding, only. The characteristic indexes of 
forward and back motions of sliding are denoted 
by the parameters 
 

 ( )
( )φβ

φα
±

=
cos

sin
2,1

m
K .                      (30) 

 
As consequence, the relation (7), with the 
notations (29), becomes 
 

 
K

K 2,1
2,1sin =ψ                           (31) 

 

For the beginning, it is considered K1<K2. Then, 
there are the following possible situations: 
a] K1<K<K2 for which the angle ψ2 can not exist, 

situation that corresponds to a sliding 
motion, forward only (AIt);  

b] K<K1<K2 when no one of the angles of 
motion initiation is possible, that 
corresponds to the situation of rest (R); 

c] K1<K2<K, situation when both types of sliding 
are possible (ψ1<ψ2), and the regime of 
motion is with forward and back sliding 
(AIt+AIp). 

For the situation when K1> K2 the possible cases 
are as follows:  
a] K2<K<K1 for which the moment ψ1 does not 

exist, which shows that the only possible 
regime of motion is with back sliding (AIp);  

b] K<K2<K1, where initial moments for motions 
with sliding do not exist, i.e. there is the rest, 
only (R);   

c] K2<K1<K where there are possible solutions 
for both initial moments (ψ1 <ψ2) and so, the 
regime of motion is with forward and back 
sliding (AIt+AIp). 

Finally, in accordance to the relations (31), it can 
be written 
 

 ( )
( ) ( )φβφβ

βαφ
−+

+
−=−

coscos

cos2sin
21 KK            (32) 
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The conditions K1<K2 are realized if 
( )βα +cos >0, that leads to β<(π/2)−α. The other 

situation, K1> K2 can appear if <0, i.e. 
only for β>(π/2)−α.  

( β+αcos )
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