OCTAVIAN LIPOVAN

SOME GENERALISATION OF THE BARTLE, DUNFORD AND SCHWARTZ INTEGRABILITY MODEL

Abstract:

In [4] the author introduces the notion of pseudosubmeasure as generalization of the submeasure concept [2], and studies some proprieties of the pseudosubmeasure functions with values in a pseudometric space.

The purpose of this paper is to develop an integration theory for these functions, with respect to a semigroup valued measure, using families of pseudosubmeasure and the associated topological rings. AMS Subject Classification Code (2000):28A20, 28B15

Keywords:

Bartle, Dunford and Schwartz integrability model, generalisation, theory

PRELIMINARIES

The notions and the notations used here follow the paper [4].

Let D be an ordered set with the smallest element d_0 . On this set we define a mapping: $(d_1, d_2) \rightarrow d_1 + d_2$ with the following properties:

$$(P_1) \quad d_a + d = d + d_0; \forall d \in D$$

(P2)
$$d_1 + d_2 = d_2 + d_1; \forall d_1, d_2 \in D$$

$$(P3) \quad d_1 \leq d_2 \Longrightarrow d + d_1 \leq d + d_2; \forall d \in D$$

There exists a subset $D_1 \subseteq D$ left directed such that

$$(P4) \qquad \forall d \in D_1, \exists d_1 \in D$$

so that $d_1 + d_1 \leq d$.

Definition 1.1. A pseudometric on a set X is a Dvalued function $p: X \times X \rightarrow D$ so that:

(i)
$$p(x, y) = d_0 \Leftrightarrow x = y$$

(*ii*)
$$p(x, y) = p(y, x), x, y, z \in X$$

(*iii*)
$$p(x, y) \le p(x, z) + p(z, y); x, y, z \in X.$$

A set X together with a pseudometric ρ is called a pseudometric space and is denoted by (X, ρ, D) . **Remark 1.2.** Every uniform space (X, \mathcal{U}) is pseudosemimetrizable, [4]. Let S be a ring (or algebra) of subsets of fixed set S.

Definition 1.3. A pseudosubmeasure on a ring $S \subset \mathcal{P}(S)$ is a mapping $\gamma : S \rightarrow D$ such that:

$$(S_{i}) \qquad \gamma(\mathcal{O}) = d_{0}$$

 $(\mathcal{S}_{\mathcal{D}}) \qquad E \subseteq F \Longrightarrow \gamma(E) \le \gamma(F), E, F \in \mathcal{S}$

 $(S_{\mathcal{S}}) \qquad \gamma(E \cup F) \leq \gamma(E) + \gamma(F), E, F \in \mathcal{S}$

If γ has the propert that $\gamma(A) = d_0 \Rightarrow A = \emptyset$, then mapping $p: S \times S \rightarrow D$; $\rho(A, B) = \rho(A \Delta B)$ is a pseudometric on S invariant to translation Δ (symmetric difference).

Let $\Gamma = \{\gamma_i : S \to D\}_{i \in I}$ be a family of pseudosubmeasure on $S \subset P(S)$ and consider the family $\Omega_{\Gamma} = \{v_{K,d} : K = finite \subseteq I, d \in D_1\}$, where $v_{K,d} = (A \in S : \gamma_i(A) \le d, a \in K\}$.

Then there exist a FN-topology $\tau(\Gamma)$ on S so that $S(\Gamma) = (S, \Delta, \cap, \tau(\Gamma))$ is a topical ring. Let (X, ρ, D) be a pseudometric space.

ACTA TECHNICA CORVINIENSIS – BULLETIN of ENGINEERING

By generalizing the model established in [3], we introduce an uniform structure on X^{δ} in the following way: To every $K = finite \subset I, d \in D$, we associate the set:

$$\mathcal{W}_{k}(D) = \{(f,g) \in X^{S} \times X^{S}; \gamma_{i} \{s \in S; \rho(f(s),g(s)) \ge d\} < d, i \in K\}$$

Then, the family $\{W_k(d); d \in D_1, K = \text{finite} \subset I\}$ forms a base for an uniform structure \mathcal{U}_{Γ} on X^S . We denote $X^S(\Gamma) = (X^S, \mathcal{U}_{\Gamma})$. The map $f \in X^S$ is a S-step function if there exists $x_i \in X, E_i \in S, i = 1, 2, ..., n$

 $x_i \neq x_j, E_i \cap E_j = \emptyset, i \neq j, S = \bigcup_{i=1}^n E_i \text{ so that } \forall s \in E_i$ imply $f(s) = x_i, i = 1, 2, ..., n.$

The space of S-step functions will be denoted by $\mathcal{E}(S, X)$.

Definition 1.4. The function $f \in X^{s}$ is Γ -pseudosubmeasurable if f belongs to the closure of $\mathcal{E}(\mathcal{S}, X)$ in $X^{s}(\Gamma)$.

We denote by \mathcal{M} [\mathcal{S} , Γ , X] the set of these functions.

Definition 1.5. Let $\{f_a\}$ be a generalized sequence in $\mathcal{M}[S, \Gamma, X]$ and $f \in \mathcal{M}[S, \Gamma, X]$. If $f_a \to f$ in $X^{S}(\Gamma)$, then $\{f_a\}$ converges to f in Γ -pseudomeasures and we denote $f_a \xrightarrow{r} f$.

BASIC ASSUMPTIONS

Let *S* be a nonempty set, $S \subset P(S)$ be an algebra of subsets of *S* and consider a family of pseudosubmeasures $\Gamma = \{\gamma_i : S \to D\}_{i \in I}$.

Let (X_i, ρ_i, D^i) , i = 1, 2, 3 be three pseudometric abelian semigroups for which the addition is uniformly continous with respect to the pseudometric ρ_i).

In the sequel we consider an additive set function $\mu: S \to X_2, \mu(\emptyset) = 0$, and we will choose a family of pseudosubmeasures as it will be specified.

The maps which are to be integrated with respect to μ will belong to X_1^s and the integral with take values in X_3 or its completion \hat{X}_3 .

Suppose that a separate continuous bilinear map exists $X_1 \times X_2 \rightarrow X_3$; $(x, y) \mapsto x \cdot y$ so that:

i)

$$x \cdot 0 = 0 \cdot y = 0, (x \in X_1, y \in X_2)$$

$$(x_1 + x_2) \cdot (y_1 + y_2) = x_1 \cdot y_1 + x_1 \cdot y_2$$

$$+ x_2 \cdot y_1 + x_2 \cdot y_2, (x_1, y_1 \in X_1, x_2, y_2 \in X_2).$$

Finally we suppose that Γ_{μ} , μ and the above bilinear map are chosen so that the following continuity axioms are satisfied:

C1) For avery $F \in S$ and every $d' \in D_1^3$ there exists $d' \in D_1^1$ with the following property: for any $n \in N$, if $\rho_1(x_i, y_i) < d', i = 1, 2, ..., n$ and $\{E_i\}$ is sequence of pairwise disjoint set from S

then:
$$\rho_3\left(\sum_{i=1}^n x_i \mu(E_i \cap F), \sum_{i=1}^n y_i \mu(E_i \cap F)\right) < d.$$

C2) For any $x \in X_1$, $\lim_{\substack{E \to \emptyset \\ E \in S}} x\mu(E) = 0.$

INTEGRABLE FUNCTIONS

Let $f \in \mathcal{E}(\mathcal{S}, X)$ be a *S*-step function.

Definition 3.1. For $E \in S$, the integral of f on E

is by definition $\int_{E} f d\mu = \sum_{i=1}^{n} x_i \mu(E_i \cap E).$

We denote by $\mathcal{E}(\mathcal{S},\Gamma_{\mu},X_1,X_3)$ the set of Γ_{μ} -integrable step functions.

Theorem 3.2. (i) Relatively to the operation (f + g)(s) = f(s) + g(s), the space $\mathcal{E}(S, \Gamma_u, X_1, X_3)$ is a subsemigroup of X_1^3 .

(ii) For $E \in S$, the map $f \to \int_E f d\mu$ from

 $\mathcal{E}(\mathcal{S}, \Gamma_{\mu}, X_1, X_3)$ to X_3 is additive.

(iii) For $f \in \mathcal{E}(\mathcal{S}, \Gamma_{\mu}, X_1, X_3)$ the map $E \rightarrow v(E), v(E) = \int_E f d\mu, E \in S$ is an additive function.

$$\begin{array}{ll} (i \nabla) & For & f \in \mathcal{E}(\mathcal{S}, \Gamma_{\mu}, X_{1}, X_{3}); \\ \lim_{E \xrightarrow{\Gamma_{\mu}} 0} \nabla(E) = \lim_{E \xrightarrow{\Gamma_{\mu}} 0} \int_{E} f d\mu = 0 \end{array}$$

The proof follows from definition 3.1 and axioms C_1 and C_2 . The extension of the integral from step functions to the arbitrary functions in X_1^s is based on the following result:

Lemma 3.3. Let $\{f_a\}$ be a generalized sequence from $f \in \mathcal{E}(\mathcal{S}, \Gamma_\mu, X_1, X_3)$, which is Cauchy in $X_1^S(\Gamma_\mu)$. For $\left\{ \int_E f_\alpha d\mu \right\}$ to be a Cauchy

sequence in X_3 uniform with respect to $E \in S$ it is necessary and sufficient that:

a) For any neightbourhood V of 0 in X_3 there exists an index $\alpha_0, K = finite \subset I$ and $d \in D$, so that $: \alpha \ge \alpha_0$ and $\gamma_i(E) < d, i \in K$ imply $\int f_\alpha d\mu \in V$

b) For sny neighbourhood ∇ of 0 in X_5 there exists and index α_0 and $F \in S$ so that

 $\int_{E} f_{\alpha} d\mu \in V \text{ if } \alpha \ge \alpha_{0} \text{ and } E \in \mathcal{S}, E \subset S - F.$

Proof. Necessity. For any neighbourhood V of 0 in X_3 there exists a symmetric entourage W of the uniform structure from X_3 so that $W^2(0) \subset V$.

Let
$$\alpha_0$$
 be so that $\left(\int_E f_{\alpha} d\mu, \int_E f_{\alpha_0} d\mu\right) \in W$ for

any $E \in S$ if $\alpha \ge \alpha_0$.

From Theorem 3.2., IV, it results that exists $d \in D_1, K = finite \subset I$ so that we have: $\int_E f_{\alpha_0} d\mu \in W(0) \text{ if } \gamma_i(E) < d, i \in K.$

Therefore $\int_{E} f_{\alpha} d\mu \in V$ if $\alpha \ge \alpha_0$ and

 $\gamma_i(E) < d, i \in K$, that is the condition a).

The condition b) is obtained by taking $E = \left\{ s \in S : f_{\alpha_0}(s) \neq 0 \right\}$. We have $F \in S$, and $\int_E f_{\alpha_0} d\mu = 0$ for all $E \in S$ with $E \subset S - F$.

Sufficiency. Let W be a symmetric entourage for X_3 and let α_0 , $K = finite \subset I$, $d \in D_1$ and F be chosen depending on the neightbourhood W(0) according to the conditions a) and b) simultaneously. For F and W, let entourage U from X_1 be chosen according to axiom C_1 . We write

 $F_{\alpha\alpha'} = \left\{ s \in S; (f_{\alpha}(s), f_{\alpha'}(s)) \notin U \right\}, F_{\alpha\alpha'} \in S.$ Since $\{f_{\alpha} \text{ is Cauchy in } X_1^{S}(\Gamma_{\mu}) \text{ there exists}$ $\alpha_1 \ge \alpha_0 \text{ so that } \gamma_i(F_{\alpha\alpha'}) < d, i \in K \text{ for } f$ $\alpha, \alpha' \geq \alpha_1$. For $E \in S$ in the semigroup $X_3 \times X_3$, we can write:

$$\left(\int_{E} f_{\alpha} d\mu \int_{E} f_{\alpha} d\mu\right) = \left(\int_{E \cap F_{\alpha \alpha}} f_{\alpha} d\mu \int_{E \cap F_{\alpha \alpha}} f_{\alpha} d\mu \int_{E \cap F_{\alpha \alpha}} f_{\alpha} d\mu\right) + \left(\int_{E \setminus (F_{\alpha \alpha} \cup F) - E \setminus (F_{\alpha \alpha} \cup F) - E$$

 $\in W(0) \times W(0) + W(o) \times W(0) + W \subseteq W^{\ell} + W^{\ell}, \alpha, \geq \alpha_{1}$ *Corollary 3.4.* Let $\{f_{\alpha}\}$ and $\{g_{\beta}\}$ be two generalized sequences from $\mathcal{E}(\mathcal{S}, \Gamma_{\mu}, X_{1}, X_{3})$, convergent in $X_{1}^{s}(\Gamma_{\mu})$ to the same function.

If $\left\{ \int_{E} f_{\alpha} d\mu \right\}$ and $\left\{ \int_{E} g_{\beta} d\mu \right\}$ are generalized Cauchy sequences in X_{3} uniformly in $E \in S$, then for any entourage W from X_{3} there exists α_{0} and β_{0} so that if $\alpha \geq \alpha_{0}$, $\beta \geq \beta_{0}$ it results that $\left(\int_{E} f_{\alpha} d\mu, \int_{E} g_{\beta} d\mu \right) \in W$, uniformly in $E \in S$.

Proof. Given a symmetric entourage W_1 from X_3 so that $W_1^2 + W_1^2 + W_1^2 \subseteq W$ we choose an entourage U from X_1 corresponding to W_1 according to axiom C_1 .

We write $F_{\alpha\beta} = \{s \in S; (f_{\alpha}(s), g_{\beta}(s)) \notin U\}\}.$ From the previous Lemma it results that there exits $\alpha_0, \beta_0, d \in D, K = \text{finite} \subset I$ so that if $F \in S$ and $\alpha > \alpha_0, \beta > \beta_0, \gamma_i(E) < d, i \in K, E$ $\subset S - F, E \in S$ we have $\int_E f_{\alpha} d\mu \in W_1(0)$ and

$$\int_{-} f_{\beta} d\mu \in W_1(0)$$

By hypothesis there exist if $\alpha_1 \ge \alpha_0$ and $\beta_1 \ge \beta_0$ so that for $\alpha > \alpha_1, \beta > \beta_1$, we have $\gamma_i(F_{\alpha\beta}) < d, i \in K$.

Expressing the pair $\left(\int_{E} f_{\alpha} d\mu, \int_{E} g_{\beta} d\mu\right)$ in the same way as in the proof of the sufficiency from Lemma 3.3., the result is obtained.

Definition 3.5. The function $f \in X_1^s$ is called Γ_{μ} - integrable of there exists a generalized sequence $\{f_{\alpha} \text{ from } \mathcal{E}(\mathcal{S},\Gamma_{\mu},X_1,X_3)\}$ so that $f_{\alpha} \xrightarrow{\Gamma_{\mu}} f$ and $\{\int_{E} f_{\alpha}d\mu,\}$ is a generalized Cauchy sequence in X_3 , uniformly in $E \in \mathcal{S}$. Then the Γ_{μ} -integral is the element from \hat{X}_3 the completion of X_3 , defined by: $\int_{E} f_{\alpha}d\mu = \lim_{\alpha} \int_{E} f_{\alpha}d\mu$.

From the Corollary 3.4 it results that above Γ_{μ} integral is properly defined. We denote by $\mathcal{L}(S, \Gamma_{\mu}, X_1, X_3)$ the set of Γ_{μ} -integrable functions from $\mathcal{M}[S, \Gamma_{\mu}, X_1]$.

It is obvious that $\mathcal{E}(S,\Gamma_{\mu},X_1,X_3) \subset \mathcal{L}(S,\Gamma_{\mu},X_1,X_3)$ and the Γ_{μ} -integral restricted to $\mathcal{E}(S,\Gamma_{\mu},X_1,X_3)$ coincides with the Γ_{μ} -integral from Definition 3.1.

Theorem 3.6. Relatively to the operation of addition the set $\mathcal{L}(S, \Gamma_{\mu}, X_1, X_3)$ is a subsemigroup of X_1^S

(i) For
$$E \in S$$
, the mapping $f \to \int_E f d\mu$ of $\mathcal{L}(S, \Gamma_\mu, X_1, X_3)$ in \hat{X}_3 is additive:

$$\int_{E} (f+g)d\mu = \int_{E} fd\mu + \int_{E} gd\mu, f, g \in \mathcal{L}(\mathcal{S}, \Gamma_{\mu}, X_{1}, X_{3})$$

(ii) For
$$f \in \mathcal{L}(\mathcal{S}, \Gamma_{\mu}, X_1, X_3)$$
 the mapping
 $E \rightarrow v(E) = \int_E f d\mu, E \in \mathcal{S}$ is additive:

$$v\left(\bigcup_{i=1}^{n} E_{i}\right) = \sum_{i=1}^{n} v(E_{i}), E_{i} \cap E_{j} = \emptyset, i \neq j, v(\emptyset) = 0$$

For $f \in \mathcal{L}(\mathcal{S}, \Gamma_{\mu}, X_{1}, X_{3})$ we have:
$$\lim_{\Gamma_{\mu}} v(E) = 0$$

 $E \xrightarrow{E \in \mathcal{S}}$

The proof follows from Corollary 3.4. and the definition 3.5.

REFERENCES

- [1] N. BOURBAKI: Eleménts de Mathématique, Livre III, Topologie générale, Chapitre 9, Hermann Paris, 1958.
- [2] L. DREWNOWSKY: Topological Rings of Sets, Continous set functions, Integration I,II, Bull.Acad.Polon.Sci.Math.Astr.Phis 20,4(1972), 269-276, 277-286.
- [3] N.DUNFORD, J. SCHWARTZ: Linear operators, Part I, Intersience, New York, 1958.
- [4] O. LIPOVAN: Some generalization of measurable functions, Univ. Beograd. Publ. Elektrotehn. Fak. Ser.Math. 7(1996) 25-30.
- [5] O. LIPOVAN: Elements of Submeasure Theory with Applications, Monografii Matematice, Nr.46, 1992 Universitatea de Vest Timisoara.
- [6] O. LIPOVAN: Exhausting and order continuus pseudosubmeasures, BUI. St., Univ "Politehnica", Timisoara, Tom 42 (56),2, Matematica – Fizica 44-49.
- [7] J.C. MASSE: Integration dans les semigroupes, Collect. Math 23, Départm. De Math. Université Loval Quebec, 1974.
- [8] E. POPA : O caracterizare a spatiilor uniforme. Studii si Cercetari Matematice, 19, 9(1967)1299-1301, Ed. Acad. RSR, Bucuresti

AUTHORS & AFFILIATION

OCTAVIAN LIPOVAN

"POLITEHNICA" UNIVERSITY OF TIMISOARA, DEPARTMENT OF MATHEMATICS, ROMANIA