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 Abstract: 

The main goal of this paper is to develop a methodology for analyzing the non-axisymmetrical 
swirling flows with helical vortex breakdown by means of linear stability analysis. For the case of high 
Reynolds numbers the eigen value problem governing the linear stability analysis of the Batchelor 
vortex is investigated using a boundary adapted spectral collocation technique. A symmmetrization is 
performed eliminating all geometric singularities on the left-hand sides of the governing equations 
set. The method provides a fairly accurate approximation of the spectrum without any scale 
resolution restriction. 
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 INTRODUCTION 

 
Most of the vortex stability analyses concerned 
axisymmetrical vortices with axial flow [1] in 
order to explain the vortex breakdown 
phenomenon observed experimentally for the 
first time on delta wings [2], in pipes [3] and in 
cylinders with rotating ends [4]. Obviously, the 
axial symmetry hypothesis is a major 
simplification having the main benefit of 
dramatically reducing the computational cost 
[5]. On the other hand, it introduces important 
limitations as far as the three-dimensionality 
and unsteadiness of the flow are concerned. 
The present paper focused on developing an 
analytical and numerical technique for 
analyzing the eigenvalue problem governing 
the linear stability of an inviscid swirling fluid 
flow under small perturbations. This problem is 
characterized by a system of ordinary 
differential equations with variable coefficients.  
In most cases, the spatially or temporal stability 
(classified for open flows as in [6]) under 
infinitesimal perturbations is reduced to the 

study of an algebraic eigenvalue problem of this 
type. The study leads to a dispersion relation 
connecting in fact the growth rate ω  and the 
axial wavenumber  as a consequence of the 
condition that nontrivial eigenvalues to exist. 
Most of the  investigations [1], [7] concerned the 
values of these nondimenional parameters for 
which the vortex become unstable in the case of 
either a spatial stability or temporal stability 
investigation. Since the investigation of this 
aspect may imply a large amount of 
measurement, one must resort also to 
numerical techniques. Although a spatial 
stability analysis implies the investigation of a 
nonlinear eigenvalue problem this type of 
analysis directly provides the frequency ranges 
of the most unstable modes. In this paper we 
consider a more general mathematical model 
for swirling flow stability analysis, starting with 
the unsteady Euler equations in cylindrical 
coordinates. In doing so, we can examine both 
unsteady and circumferentially variable 
perturbations. 

k
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The paper is organized as follows. The 
eigenvalue problem governing the linear 
stability analysis for inviscid swirling flows 
against normal mode perturbations is defined in 
Section 2. The third section a new radial spectral 
approximation is proposed and in Section 4 the 
method is applied for the Batchelor vortex case 
and the actual numerical procedure is 
presented. The main advantages of the proposed 
methods are pointed out in Section 5.  

 
 PROBLEM FORMULATION 

 
The governing equations in the case of 
incompressible and inviscid flow are the Euler 
equations 
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The following flow fields decomposition are 
used: velocity vV + , pressure π+p  where 
( pV , )  is the base flow, and ( )π,v  is the 
perturbation considered small.  
Since the base flow obey the Euler equations (1) 
the evolution of such small perturbations of the 
basic flow is governed by the linearized Euler 
equations  
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In the linearization process the second order 
terms in the small perturbations were 
neglected. Assuming a steady columnar flow 
the velocity profile is written 
 

( ) ( ) ( )[ ]rWrUrV ,0,=                           (3) 
 

where  represents the axial velocity 
component the azimuthal component of the 
velocity both depending only on radius. Next, 
we consider the following factorization of the 
small perturbations 
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Introducing the factorization form (4) into the 
linearized Euler equations (2) we obtain the 
following system of first order differential 
equations 
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where prime denotes differentiation with 
respect to the radius. This homogenous first 
order differential system is completed with the 
following boundary conditions at axis and the 
far field 
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Equations (5) and (6) represent an eigenvalue 
problem. 

 
 BOUNDARY ADAPTED RADIAL SPECTRAL 

APPROXIMATION 
 

The pseudospectral - collocation method is one 
of the most used technique for the numerical 
investigations in hydrodynamic stability 
problems. Many researchers have demonstrated 
the applicability of this method with high degree 
of accuracy to eigenvalue problems governing 
the linear stability of swirling flows [9-11]. 
The difference between the classical method 
and the modified version proposed here is 
given by the selected spaces involved in the 
discretization process motivated by the need to 
adapt the grid points to the singularities of the 
underlying solution.  
In fact the boundary conditions (6) at infinity 
are applied at a truncated radius distance  
selected large enough such that the numerical 
results do not depend on this truncated 
distance. 

maxr

Following [9] we define the boundary-adapted 
functions { } N...,k,k 1=φ  of modal type, i. e. 
each function provides one particular pattern of 
oscillation 
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with  the shifted Chebyshev polynomials on 

. These type of polynomials defined on 
the physical space are used in order to optimize 
the interpolative procedure. The choice is 
based on the condition that the values of the 
grid points are given by the same elementary 
analytic expression for all values of N and they 
did not have to be computed numerically for 
every N. 

*
kT
]max,0[ r

The linear transformation that mapps the 
standard interval [ ]1,1−∈ξ  into the physical 
range of our problem [ ]max,0 rr∈  and preserves 
the clustering rate of collocation nodes is 
defined by the linear transformation 
 

( )
22
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while the inverse transformation is defined 
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The proposed method allowed us to discard the 
first and last collocation nodes, expansion 
functions satisfying the boundary conditions 
from the construction of our modal boundary-
adapted basis. In this way the critical 
singularities which occurred in evaluating 
terms like 1/r for the numerical treatment of the 
eigenvalue problem were eliminated. Then the 
solution is approximated with respect to this 
expansion set of functions,   
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A modified Chebyshev Gauss grid 

( )
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=
NjjξΞ  in  was constructed [ 11,− ]
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In our case the collocation nodes clustered 
near the boundaries diminishing the negative 
effects of the Runge phenomenon. Another 
aspect is that the convergence of the 
interpolant on the clustered grid towards 
unknown function is extremely fast. 
Each of the basis functions from (7) meet the 
relations 
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which implies that each functions  
satisfy the boundary conditions (6).   

PHGF ,,,

With (10) the mathematical model takes the 
form 
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Let us denote by )(][ irdiagr = ,  given by (8), ir
10 −= N,...,i , [ ]

Nj
Niij
≤≤
≤≤=

1
,1)(φφ , )( ijij rφφ = , 

[ ] U(diagU ))r( i= , , [ ]W ))r(W( idiag=
Ni ≤≤1 . The system (13) can be written 
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By differentiating (10) results 
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For k = 1 we have  and rewriting (18) 
we have  
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The shifted Chebyshev polynomials meet the 
recurrence relation 
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The interpolant derivative matrix D from (17) 
was evaluated by 
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This algorithm allows us to obtain the 
eigenvalue, the eigenvector, the index of the 
most unstable mode, the maximum amplitude 
of the most unstable mode and the critical 
distance where the perturbation is the most 
amplified. 
The main advantages of the proposed method 
consist in reducing the computational time by 
reducing the matrices order to (  and for 
a certain spectral parameter N we obtain an 
exponential decreasing error. 

)284 −N

 
 NUMERICAL RESULTS FOR BATCHELOR VORTEX 

 
The above presented method was tested on a 
particular benchmark model: the Batchelor or 
q-vortex [7].  
The flow field is characterized by the velocity 
field ( ) ( ) ( )[ ]rWrUrV ,0,=  [4], 
 

( ) 2rearU −+= , )e(
r
q)r(W r 2

1 −−=     (24) 

 
where  represents the swirl number defined as 
the angular momentum flux divided by the axial 
momentum flux times the equivalent nozzle 
radius and  provides a measure of free-stream 
axial velocity. 

q

a

In [7] the numerical investigation of the two-
point boundary value problem was based on a 
shooting method. The properties of the 
Batchelor vortex are pointed out by considering 
them as functions of the swirl ratio  and the 
external flow parameter . 

q
a

The computed spectrum of the eigenvalue 
problem is depicted in Figure 1. Graphical 
representations of the spatial eigenfunction 
amplitudes of the most unstable mode are given 
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in the Figure 2. For a stabilization of the Gibbs 
phenomenon a Lanczos type σ  factor [10] was 
used, 
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Figure 1. Spectra of the hydrodinamic eigenvalue 

problem computed at ω = 0.01, m=-3,  
a = 0, q = 0.1, N = 150. 

 

 
Figure 2. Values of eigenfunction amplitudes of the 

most unstable mode ω = 0.01, m = -3,  a = 0,  
q = 0.1, N = 150,  k = 0.50842-0.14243i. 

 
Table 1. Convergence behaviour of the critical 

distance for the most unstable mode with ω = 0.01, 
a = 0, q = 0.1 and m = -3. 

N Axial wavenumber k Critical distance 
rc 

100  0.64887-3.7433i 0.00302
150   0.50842-0.14243i 0.90051
180   0.50847-0.14232i 0.92294
250   0.50854-0.14216i 0.95451
300   0.50857-0.14209i 0.93874

 

 
 CONCLUSION 

 
In this paper we developed a spectral numerical 
procedure to investigate the spatial stability of a 
swirling flow subject to infinitesimal 
perturbations. Using a spectral collocation 
technique our numerical procedures directly 
provided relevant information on perturbation 
amplitude for stable or unstable induced 
modes, the maximum amplitude of the most 
unstable mode and the critical distance where 
the perturbation is the most amplified.     
The accuracy of the methods is assessed 
underlying the necessity for the construction of 
a certain class of orthogonal expansions 
functions satisfying the boundary conditions. 
The key issue was the choice of the grid and the 
choice of the modal trial basis, the scheme based 
on shifted Chebyshev polynomials provided 
good results. 
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